Category Archives: Teachers’ Resources

KISWAHILI LESSON PLANS FORM 2 IN PDF

                  MIPANGILIO YA VIPINDI/MASOMO      MUHULA WA KWANZA       KIDATO CHA PILI

JINA LA  MWALIMU:………………………………………………

NAMBARI LA TSC:………………………………………………………

SHULE :……………………………………………………………MWAKA:……………………………………………………………………

KIDATO CHA PILI                                                             SOMO LA KISWAHILI

MADA KUU: KUSOMA(UFAHAMU)                             MADA NDOGO :Ndugu majuu na wakazi wa kibabuu

WIKI:………2………………………………………………………NAMBARI LA SOMO:1

TAREHE :…………………………………………………………..WAKATI: DAKIKA 40

SHABAHA : Kufika mwisho wa somo mwanafunzi aweze;

  • kusoma kwa matamshi
  • kutumia msamiati na misemo  kwa ufasaha
  •  kujibu maswali kwa usahihi.
 

HATUA NA MUDA

 

YALIYOMO

 

SHUGHILI ZA MWALIMU NA MWANAFUNZI

 

NYENZO

 

UTANGULIZI

(DAK.5)

Maamkizi

Kupitia somo lililopita

Mwalimu na wanafunzi kuamkiana

Maelezo mafupi,maswali na majibu kuhusu somo lililopita

Wanafunzi wenyewe

Matini ya mwalimu

MWENDELEZO

(DAK.30)

Mwalimu kuwaelekeza wanafunzi kusoma ufahamu, kutambua misamiati,misemo,methali na nahau na kuyapa  maana kamili kulingana na ufahamu kisha wanafunzi kuyatumia katika utunzi wa sentensi  ili kubainisha maana zao kikamilifu

 

Kusoma ufahamu kwa kina na mantiki

Maswali na majibu baina ya mwalimu na wanafunzi kuhusu ufahamu

Majadiliano baina ya mwalimu na wanafunzi

Utunzi wa sentensi

Chemi chemi za Kiswahili    2

(uk 1-3)

Kamusi ya misemo na nahau(k.w wamithila)

Matini ya mwalimu

Wanafunzi wenyewe

HITIMISHO

(DAK.5)

Mwalimu kutoa maelezo mafupi kuhusu somo

Zoezi kwa wanafunzi kuhusu somo

Maelezo mafupi, maswali na majibu kuhusu somo

Wanafunzi kufanya zoezi

Chemi chemi za Kiswahili    2

(uk 1-3)

Kamusi ya misemo na nahau(k.w wamithila)

Matini ya mwalimu

Wanafunzi wenyewe

 

JINA LA MWALIMU:……………………………………………..

.NAMBARI LA TSC:………………………………………………………

SHULE :……………………………………………………………MWAKA:……………………………………………………………………

KIDATO CHA PILI                                                             SOMO LA KISWAHILI

MADA KUU: KUSIKILIZA NA KUZUNGUMZA          MADA NDOGO : Isimu jamii;

Majadiliano baina ya mwanafunzi na mwalimu

WIKI:…………2…………………………………………………NAMBARI LA SOMO:2

TAREHE :………………………………………………………….WAKATI: DAKIKA 40

SHABAHA : Kufika mwisho wa somo mwanafunzi aweze;

  • kuelezea sifa za mazungumzo shuleni
  •  kuweza kuigiza mazungumzo baina ya mwalimu na mwanafunzi
 

HATUA NA MUDA

 

YALIYOMO

 

SHUGHILI ZA MWALIMU NA MWANAFUNZI

 

NYENZO

 

UTANGULIZI

(DAK.5)

Maamkizi

Kupitia somo lililopita

Mwalimu na wanafunzi kuamkiana

Maelezo mafupi,maswali na majibu kuhusu somo lililopita

Wanafunzi wenyewe

Matini ya mwalimu

MWENDELEZO

(DAK.30)

Isimu jamii;

Majadiliano baina ya mwalimu na mwanafunzi;

Mwalimu kutoa maelezo ya maana ya isimu jamii na sifa za majadiliano baina ya mwalimu na mwanafunzi

Mwalimu kuwaelekeza wanafunzi kusoma majadiliano baina ya mwalimu na mwanafunzi na wanafunzi kuweza kuigiza darasani.

Majadiliano  baina ya mwalimu na wanafunzi kuhusu sajili ya darasani

Maelezo kutoka kwa mwalimu

Majibu na maswali baina ya mwalimu na wanafunzi

Kusoma mazungumzo baina mwalimu na mwanafunzi

Uigizaji wa mazungumzo hayo

Chemi chemi za Kiswahili    2

(uk 4-5)

Matini ya mwalimu

Wanafunzi wenyewe

HITIMISHO

(DAK.5)

Mwalimu kutoa maelezo mafupi kuhusu somo

Zoezi kwa wanafunzi kuhusu somo

Maelezo mafupi, maswali na majibu kuhusu somo

Wanafunzi kufanya zoezi

Chemi  chemi za Kiswahili   2

(uk 4-5)

Matini ya mwalimu

Wanafunzi wenyewe

 

JINA  LA MWALIMU:……………………………………………..

.NAMBARI LA TSC:………………………………………………………

SHULE :……………………………………………………………MWAKA:……………………………………………………………………

KIDATO CHA PILI                                                             SOMO LA KISWAHILI

MADA KUU: SARUFI NA MATUMIZI YA LUGHA     MADA NDOGO : Mofimu

WIKI:…………2……………………………………………………NAMBARI LA SOMO:3

TAREHE :…………………………………………………………..WAKATI: DAKIKA 40

SHABAHA : Kufika mwisho wa somo mwanafunzi aweze;

  • kueleza maana ya mofimu na aina zake
  • kuweza kutambua  mofimu katika maneno
  • kutaja maana mbalimbali zinazowakilishwa na mofimu
 

HATUA NA MUDA

 

YALIYOMO

 

SHUGHILI ZA MWALIMU NA MWANAFUNZI

 

NYENZO

 

UTANGULIZI

(DAK.5)

Maamkizi

Kupitia somo lililopita

Mwalimu na wanafunzi kuamkiana

Maelezo mafupi,maswali na majibu kuhusu somo lililopita

Wanafunzi wenyewe

Matini ya mwalimu

MWENDELEZO

(DAK.30)

Mofimu;

Mwalimu kutoa maelezo ya maana ya mofimu, aina za mofimu, kuonyesha mofimu katika maneno na kutaja maana mbalimbali zinazowakilishwa na mofimu

Wanafunzi kusikiliza kwa makini na kuandika maelezo ya mwalimu

Majadiliano baina ya mwalimu na wanafunzi

Maelezo kuhusu somo kutoka kwa mwalimu

Mazungumzo baina ya mwalimu na wanafunzi

Maswali na majibu baina ya mwalimu na wanafunzi

Wanafunzi kuandika maelezo ya mwalimu

 

Chemi chemi za Kiswahili    2

(uk 6-8)

Matini ya mwalimu

Wanafunzi wenyewe

HITIMISHO

(DAK.5)

Mwalimu kutoa maelezo mafupi kuhusu somo

Zoezi kwa wanafunzi kuhusu somo

Maelezo mafupi, maswali na majibu kuhusu somo

Wanafunzi kufanya zoezi

Chemi chemi za Kiswahili    2

(uk 6-8)

Matini ya mwalimu

Wanafunzi wenyewe

 

Free Grade 7 CBC Junior Secondary Exams Free

Download Free Grade Seven Exams PDF

English EXAMS.pdf
GRADE 7 AGRIC MIDTERM 1 EXAM.pdf
GRADE 7 COMP SCI MIDTERM 1 EXAM.pdf
GRADE 7 ENG MIDTERM 1 EXAM.pdf
GRADE 7 HEATHE EDU MIDTERM 1 EXAM.pdf
GRADE 7 INT SCI MIDTERM 1 EXAM.pdf
GRADE 7 KIS MIDTERM 1 EXAM.pdf
GRADE 7 PE MIDTERM 1 EXAM.pdf
GRADE 7 PERFMING ARTS MID TERM 1 EXAM.pdf
GRADE 7 RELIGION LIFE SKILLS MIDTERM 1 EXAM.pdf
GRADE 7 SST MIDTERM 1 EXAM.pdf
GRADE 7 VISUAL ARTS MID TERM 1.pdf
Health Education E.pdf
Integrated Science E.pdf
Integrated Science EXAMS.pdf
Pretechnical EXAMS.pdf
Religious Education EXAMS.pdf
Social Studies EXAMS.pdf

BASKETBALL DOCS
GRADE 7 16TH
Grade 7 CBC Notes
GRADE 7 EXAMS
GRADE 7 NOTES
GRADE 7 SCHEMES
New Secondary setbook guides
OPENER EXAMS 2023
SCHEMES OF WORK 2023

 

KISWAHILI FORM 2 SCHEMES OF WORK TERM 1-3

ASILIA

  1. KLB
  2. Mwongozo wa Mwalimu
  3. Oxford
  4. Kamusi
JUMA KIPINDI  

SOMO

 

SHABAHA

 

MBINU

 

VIFAA

 

ASILIA

 

MAONI

1 4-6 KUFUNGUA SHULE NA KUSAHIHISHA KAZI YA LIKIZO
2 1 MTIHANI
2 Isimu Jamii

Mazungumzo hotelini

Kufika mwisho wa funzo mwanafunzi aweze;

Wanafunzi waweze kutamka maneno ipasavyo

Waweze kueleza sifa za lugha ya hotelini

 

Kusoma

Kueleza sifa

 

Chaki

Ubao

Madaftari

 

Fasaha BK 1 UK 11

KLB BK 2 UK 1-3

Chem BK 2 UK 26

3 Fasihi

Vipengele muhimu

Ploti mahusika

Kufika mwisho wa funzo mwanafunzi aweze;

Kueleza vipengele

Kueleza wahusika na sifa zao

 

Kueleza

Kutoa mifano

 

Chaki

Ubao

Madaftari

Fasaha BK 2

UK 42, 64

KLB BK 2 UK 3-8

Chem BK 2 UK 8

4 Fasihi

Dhamira/maudhui

Kufika mwisho wa funzo mwanafunzi aweze;

Kueleza maana ya maudhui, dhamira na kutoa mifano

 

Kueleza

Kutoa mifano

 

Chaki

Ubao

Madaftari

Fasaha BK 2

UK 42, 64

KLB BK 2 UK 3-8

Chem BK 2 UK 8

5 Fasihi

Mtindo wa lugha na sanaa

Kufika mwisho wa funzo mwanafunzi aweze;

Kutofautisha mitindo miwili

 

Kueleza

Kutambua

 

Chaki

Ubao

Madaftari

Fasaha BK 2

UK 42, 64

KLB BK 2 UK 3-8

Chem BK 2 UK 8

6 Uchambuzi wa fasihi Kufika mwisho wa funzo mwanafunzi aweze;

Kuchambua makala ya fasihi

 

Kusoma

Kujibu maswali

Chaki

Ubao

Madaftari

 

KLB BK 2 UK 6-8

Chem BK 2 UK 8

3 1 Sarufi

Mofimu

Kufika mwisho wa funzo mwanafunzi aweze;

Kueleza maana ya mofimu

 

Kueleza

Kutoa mifano

Chaki

Ubao

Madaftari

Fasaha BK 2 UK 102

KLB BK 2 UK 8-9

Chem BK 2 UK 6-8

2 MTIHANI
3 Sarufi

Viambishi

Kufika mwisho wa funzo mwanafunzi aweze;

Kutofautisha viambishi awali na tamati

 

Kusoma

Kuandika

Chaki

Ubao

Madaftari

Fasaha BK 2 UK 114

KLB BK 2 UK 10

Chem BK 2 UK 114

4 Insha ya maigizo Kufika mwisho wa funzo mwanafunzi aweze;

Kuandika mchezo wa kuigiza

 

Kueleza

Kuandika

Chaki

Ubao

Madaftari

Fasaha BK 2 UK 22

KLB BK 2 UK 12

Chem BK 2 UK 29

5 Isimu Jamii

Uhusiano wa kitabaka

Kufika mwisho wa funzo mwanafunzi aweze;

Kueleza jinsi ambavyo watu wa matabaka mbalimbali wanavyohusiana

 

Kusoma

Kujadili

 

Chaki

Ubao

Madaftari

 

Fasaha BK 2 UK 22

KLB BK 2 UK 13

Chem BK 2 UK 29

6 Ufahamu

Matumizi ya kamusi

Kufika mwisho wa funzo mwanafunzi aweze;

Kusoma makala na kujibu maswali ya ufahamu

 

Kusoma

Kujadili

Kujibu maswali

 

Chaki

Ubao

Madaftari

 

KLB BK 2 UK 15

4 1 Sarufi

Nomino

Kufika mwisho wa funzo mwanafunzi aweze;

Kutambua aina za nomino

Kueleza kwa kutoa mifano

kuandika

Chaki

Ubao

Madaftari

Fasaha BK 2 UK 6

KLB BK 2 UK 29

Chem BK 2 UK 28

2 Nomino Kufika mwisho wa funzo mwanafunzi aweze;

Kufafanua aina za nomino

Kueleza/kutaja

Kutoa mifano

Kufanya zoezi

Chaki

Ubao

Madaftari

Fasaha BK 2 UK 6

KLB BK 2 UK 29

Chem BK 2 UK 28

3 MTIHANI
4-6 Vivumishi Kufika mwisho wa funzo mwanafunzi aweze;

Kubainisha aina ya vivumishi

Kueleza/kutaja

Kutoa mifano

Kufanya zoezi

Chaki

Ubao

Madaftari

 

KLB BK 2 UK 22

5 1 Insha ya mahojiano Kufika mwisho wa funzo mwanafunzi aweze;

Kutofautisha dayolojia na mahojiano

Kueleza/kutaja

Kutoa mifano

Kufanya zoezi

Chaki

Ubao

Madaftari

Fasaha BK 2 UK 31

KLB BK 2 UK 29

Chem BK 2 UK 214

2 Fasihi

Vitendawili

Kufika mwisho wa funzo mwanafunzi aweze;

Kubainisha vitendawili mbalimbali

 

Kusoma

Kutoa mifano

Kufanya zoezi

 

Chaki

Ubao

Madaftari

Fasaha BK 2

UK 109-117

KLB BK 2 UK 30

Chem BK 2 UK 184

3 MTIHANI
4 Mafumbo Kufika mwisho wa funzo mwanafunzi aweze;

Kubainisha aina za mafumbo

Kusoma

Kutoa mifano

Kutoa majibu

Chaki

Ubao

Madaftari

Fasaha BK 2 UK 57

KLB BK 2 UK 30

Chem BK 2 UK 184

5-6 Ufahamu

Uchafuzi wa mazingira

Kufika mwisho wa funzo mwanafunzi aweze;

Kujibu maswali ya msamiati

Kusoma

Kujadili

Kufanya zoezi

Chaki

Ubao

Madaftari

 

KLB BK 2 UK 33

6 1 Sarufi

Vivumishi

Kufika mwisho wa funzo mwanafunzi aweze;

Kutambua na kutunga sentensi

Kutoa mifano

Kutunga sentensi

Kufanya zoezi

Chaki

Ubao

Madaftari

Fasaha BK 2 UK 37

KLB BK 2 UK 36

Chem BK 2 UK 74

2-3 Fasihi

Mighani/visakale

Kufika mwisho wa funzo mwanafunzi aweze;

Kutoa maana na mifano

Kutaja sifa

 

Kutaja

Kutoa mifano

 

Chaki

Ubao

Madaftari

 

Fasaha BK 2 UK 74

KLB BK 2 UK 58

Chem BK 2 UK 196

4 MTIHANI
5 Ufahamu Kufika mwisho wa funzo mwanafunzi aweze;

Kuboresha matamshi yao

 

Kuandika

Chaki

Ubao

Madaftari

 

KLB BK 2 UK 80

6 Muhtasari Kufika mwisho wa funzo mwanafunzi aweze;

Waweze kusoma makala na kuyafupisha ipasavyo

 

Kusoma

Kuandika

 

Chaki

Ubao

Madaftari

 

KLB BK 2 UK 82

7 1 Viwakilishi Kufika mwisho wa funzo mwanafunzi aweze;

Kutaja aina ya viwakilishi na kuvitungia sentensi

 

Kutambua

Kutunga sentensi

 

Chaki

Ubao

Madaftari

 

Fasaha BK 2 UK 37

KLB BK 2 UK 50

Chem BK 2 UK 85

2 Kuandika

Tahadhari/onyo/ilani

Kufika mwisho wa funzo mwanafunzi aweze;

Kuandika kwa hati nadhifu

Kusoma

Kujadili

Kufanya zoezi

Chaki

Ubao

Madaftari

 

KLB BK 2 UK 53

Chem BK 2 UK 119

3 Kusikiliza na kuzungumza

(Visawe)

Kufika mwisho wa funzo mwanafunzi aweze;

Kutamka maneno kwa ufasaha

 

Kusoma

Kueleza maana

Chaki

Ubao

Madaftari

 

KLB BK 2 UK

Kamusi

4 Mazungumzo hospitalini Kufika mwisho wa funzo mwanafunzi aweze;

Kueleza sifa za lugha ya hospitalini

Kusoma

Kueleza

Kuandika nakala

Chaki

Ubao

Madaftari

Fasaha BK 2 UK 29

KLB BK 2 UK 62

Chem BK 2 UK 159

5 MTIHANI
6 Ufasaha wa lugha

Misemo

Kufika mwisho wa funzo mwanafunzi aweze;

Kutambua maana

 

Kueleza

Kutunga sentensi

Chaki

Ubao

Madaftari

 

KLB BK 2 UK 76

8 1 Ufahamu

Maadili mema

Kufika mwisho wa funzo mwanafunzi aweze;

Kusoma makala kwa ufasaha

Kusoma

Kutaja misamiati

Kufanya zoezi

Chaki

Ubao

Madaftari

 

KLB BK 2 UK 80-82

2 Muhtasari Kufika mwisho wa funzo mwanafunzi aweze;

Kutambua hatua muhimu za ufupisho

 

Kusoma

Kufupisha habari

Chaki

Ubao

Madaftari

 

KLB BK 2 UK 80-82

3 MTIHANI
4-6 LIKIZO FUPI
9 1-2 Sarufi

Vitenzi

Kufika mwisho wa funzo mwanafunzi aweze;

Kutambua aina ya vitenzi na kuvitungia  sentensi

 

Kutoa maana

Kutunga sentensi

Kufanya zoezi

 

Chaki

Ubao

Madaftari

 

KLB BK 2 UK 83

3 Isimu jamii

Mazungumzo

Posta

Kufika mwisho wa funzo mwanafunzi aweze;

Kueleza sifa za lugha ya posta

 

Kusoma kwa sauti

Kujadili sifa

 

Picha

 

Fasaha BK 2 UK 165

KLB BK 2 UK 89

4 Kuandika

Insha ya mdokezo

Kufika mwisho wa funzo mwanafunzi aweze;

Kuandika hati nadhifu

 

Kuandika

 

Mfano

Fasaha BK 2 UK 10

KLB BK 2 UK 87

Chem BK 2 UK 143

5 Ufahamu

Repoti kuhusu ukimwi

Kufika mwisho wa funzo mwanafunzi aweze;

Kusoma kwa makini na kujibu maswali ya ufahamu

 

Kusoma

Kuandika

 

Nakala

 

KLB BK 2 UK 91

6 MTIHANI

 

 

 

10 1 Ufahamu

Udurusu

Kufika mwisho wa funzo mwanafunzi aweze;

Kusoma kwa ufasaha

 

Kusoma na kuandika

Chaki

Ubao

Madaftari

 

KLB BK 2 UK 91

2 MTIHANI
3 Muhtasari

repoti kuhusu ukimwi

Kufika mwisho wa funzo mwanafunzi aweze;

Kufupisha habari bila kupoteza maana

 

Kusoma

Kufanya zoezi

Chaki

Ubao

Madaftari

 

KLB BK 2 UK 91

4 Kuandika

Insha ya ripoti

Kufika mwisho wa funzo mwanafunzi aweze;

Kuandika ripoti kuzingatia mtindo mwafaka

 

Kueleza

Kuandika

 

Mifano

 

Fasaha BK 2 UK 55

KLB BK 2 UK 91-94

Chem BK 2 UK 178

5-6 Sarufi

Viwakilishi

Kufika mwisho wa funzo mwanafunzi aweze;

Kutambua aina ya viwakilishi

Kueleza

Kutunga sentensi

Kufanya zoezi

Chaki

Ubao

Madaftari

Fasaha BK 2 UK 49

KLB BK 2 UK 94

Chem BK 2 UK 228

11 1 Kuandika

Barua simu

Kufika mwisho wa funzo mwanafunzi aweze;

Kuandika barua yenye mantiki

 

Kueleza

Kuandika

Chaki

Ubao

Madaftari

Fasaha BK 2 UK 175

KLB BK 2 UK 108

Chem BK 2 UK 241

2-3 Viwakilishi vya pekee, nafsi Kufika mwisho wa funzo mwanafunzi aweze;

Kubainisha na kuvitumia katika sentensi

 

Kutoa mifano

Kutunga sentensi

Kufanya zoezi

 

Chaki

Ubao

Madaftari

 

Fasaha BK 2 UK 178

KLB BK 2 UK 98

Chem BK 2 UK 228

4 MTIHANI
5 Mazungumzo

Kituo cha polisi

Kufika mwisho wa funzo mwanafunzi aweze;

Kueleza sifa za lugha inayotumika

 

Kutaja sifa

Kuandika nakala

Chaki

Ubao

Madaftari

 

KLB BK 2 UK 102

Chem BK 2 UK 208

6 Ufahamu Kufika mwisho wa funzo mwanafunzi aweze;

Kusoma kwa ufasaha

Kusoma

Kujadili

Kuandika

Chaki

Ubao

Madaftari

 

KLB BK 2

UK 104-107

12 1 Viwakilishi sifa Kufika mwisho wa funzo mwanafunzi aweze;

Kueleza na kutoa mifano katika sentensi

 

Kutaja

Kutunga sentensi

Kufanya zoezi

 

Chaki

Ubao

Madaftari

 

Fasaha BK 2 UK 175

KLB BK 2 UK 98

Chem BK 2 UK 241

2 Viwakilishi idadi Kufika mwisho wa funzo mwanafunzi aweze;

Kueleza na kutoa mifano katika sentensi

 

Kutaja

Kutunga sentensi

Kufanya zoezi

 

Chaki

Ubao

Madaftari

 

Fasaha BK 2 UK 175

KLB BK 2 UK 98

Chem BK 2 UK 241

3 Vimilikishi

 

Kufika mwisho wa funzo mwanafunzi aweze;

Kueleza na kutoa mifano katika sentensi

 

Kutaja

Kutunga sentensi

Kufanya zoezi

 

Chaki

Ubao

Madaftari

 

KLB BK 2

UK 109-110

4 ‘A” unganifu Kufika mwisho wa funzo mwanafunzi aweze;

Kueleza na kutoa mifano katika sentensi

 

Kutaja

Kutunga sentensi

Kufanya zoezi

 

Chaki

Ubao

Madaftari

 

KLB BK 2

UK 109-110

5 Viwakilishi virejeshi Kufika mwisho wa funzo mwanafunzi aweze;

Kueleza na kutoa mifano katika sentensi

 

Kutaja

Kutunga sentensi

Kufanya zoezi

 

Chaki

Ubao

Madaftari

 

KLB BK 2

UK 113

6 MTIHANI
13 1 Insha

Matangazo ya redio, runinga, magazetini

Kufika mwisho wa funzo mwanafunzi aweze;

Kutunga matangazo

Kusoma

 

Kueleza

Kusoma

Kuandika

 

Chaki

Ubao

Madaftari

 

Fasaha BK 2 UK 163

KLB BK 2 UK 115

2 MTIHANI
3 Matamshi bora

Vitate S na Z

Kufika mwisho wa funzo mwanafunzi aweze;

Kutamka maneno kwa ufasha

 

Kubainisha

Kusoma

Chaki

Ubao

Madaftari

 

Fasaha BK 2 UK 1

KLB BK 2 UK 120

4 Ufahamu

Dondoo

Kufika mwisho wa funzo mwanafunzi aweze;

Kujibu maswali ya ufahamu

Kusoma

Kujadili

Kuandika

Chaki

Ubao

Madaftari

Fasaha BK 2 UK 112

KLB BK 2

UK 122-124

Chem BK 2 UK 168

5 Kusoma maktabani

Shairi arudhi

Kufika mwisho wa funzo mwanafunzi aweze;

Kusoma na kufanya utafiti juu ya ushairi

 

Kusoma

Kutafiti

Kuandika

 

Chaki

Ubao

Madaftari

 

Fasaha BK 2 UK 88

KLB BK 2 UK 125

Chem BK 2 UK 177

6 Vielezi

Vielezi wakati

Kufika mwisho wa funzo mwanafunzi aweze;

Kutumia vielezi katika sentensi ipasavyo

 

Kutambua

Kutunga sentensi

 

Chaki

Ubao

Madaftari

Fasaha BK 2 UK 60, 62

KLB BK 2

UK 125-126

Chem BK 2 UK 250

14 1 Insha

Kuandika dayolojia

Kufika mwisho wa funzo mwanafunzi aweze;

Kuandika kwa hati nadhifu

Kusoma

Kujadili

Kufanya zoezi

Chaki

Ubao

Madaftari

Fasaha BK 2 UK 212

KLB BK 2 UK 119

Chem BK 2 UK 233

2-6 MARUDIO YA MTIHANI
15 1-4 KUFUNGA SHULE KWA LIKIZO LA APRILI
Kufika mwisho wa funzo mwanafunzi aweze;

 

 

Chaki

Ubao

Madaftari

 

Fasaha BK 2 UK

KLB BK 2 UK

Chem BK 2 UK

CLASS 7 SCIENCE SCHEMES OF WORK TERM 1-3

Science schemes of work for standard __7_____TERM___1___YEAR________

WEEK LESSON TOPIC SUB-TOPIC OBJECTIVES ACTIVITIES RESOURCES REFERENCES REMARKS
1

 

 

 

 

2

1 The

circulatory system

 

Parts of circulatory system By the end of this topic the learner should be able to identify the parts of the circulatory system. –        Discussion

–        Explanation

–        Demonstrating diagrams

–        Chart

–        Photographs

Diagrams from the book

-SCIA – 7 pg 2

-TG – 7 pg 2

-PSC-7 PB pg2

-TG-7 pg2

 
2   The heart By the end of this topic the learner should be able to identify and name the parts of the heart.

 

–        Discussion

–        Explanation

–        Demonstrating diagrams

–        Observation

Photographs and charts on

The parts of blood circulatory system

SCIA – 7 pg 2–4

TG – 7 pg 2

-PSC-7 PB pg3

-TG-7 pg2

 
3   Blood By the end of this topic the learner should be able to identify the component of the blood

 

–        Discussion

–        Explanation

–        Demonstrating diagrams

–        Note taking

Photographs and charts on

The parts of blood circulatory system

SCIA – 7 pg 5

TG – 7 pg 7

-PSC-7 PB pg5

-TG-7 pg

 
4   Blood vessels By the end of this topic the learner should be able to identify and describe a blood vessels and its function. –        Drawing 

–        Explanation

–        Demonstrating diagrams

Photographs and charts on

The parts of blood circulatory system

SCIA – 7 pg 6

TG – 7 pg 3

-PSC-7 PB pg6

-TG-7 pg4

 
5   Functions of the heart By the end of this topic the learner should be able to identify function. Of the heart –        Discussion

–        Explanation

–        Demonstrating diagrams

–        Note taking

Photographs and charts on

The parts of blood circulatory system

SCIA – 7 pg 7

TG – 7 pg 4

-PSC-7 PB pg6

-TG-7 pg4

 
3 1   Composition of blood By the end of this topic the learner should be able to describe white blood cells as a blood components and its function. –        Discussion

–        Explanation

–        Demonstrating diagrams

–        Note taking

Photographs and charts on

The parts of blood circulatory system

SCIA – 7 pg8

 SCIA – 7 pg 7

TG – 7 pg 4

 

 
2   The plasma By the end of this topic the learner should be able to describe plasma as blood components and its functions. –        Discussion

–        Explanation

–        Demonstrating diagrams

Photographs and charts on

The parts of blood circulatory system

SCIA – 7 pg 8

TG – 7 pg 8

-PSC-7 PB pg4

-TG-7 pg5

 
3   Red blood cells By the end of this topic the learner should be able to identify and describe red blood cell as blood components and its functions. –        Discussion

–        Explanation

–        Demonstrating diagrams

–        Drawing

Photographs and charts on

The parts of blood circulatory system

 

SCIA – 7 pg 4-8

TG – 7 pg 5

-PSC-7 PB pg8

-TG-7 pg5

 
4   White blood cells By the end of this topic the learner should be able to identify and describe white blood cells as blood components and its functions. –        Discussion

–        Explanation

–        Demonstrating diagrams

–        Note taking

Photographs and charts on

The parts of blood circulatory system

SCIA – 7 pg 8

TG – 7 pg 5

-PSC-7 PB pg9

-TG-7 pg6

 
5   The platelets By the end of this topic the learner should be able to identify and describe platelets as blood components and its functions. –        Discussion

–        Explanation

–        Demonstrating diagrams

 

Photographs and charts on

The parts of blood circulatory system

SCIA – 7 pg 8

TG – 7 pg 5

-PSC-7 PB pg9

-TG-7 pg6

 
4 1   Blood vessels By the end of this topic the learner should be able to describe the structure and functions of blood vessels –        Discussion

–        Explanation

–        Demonstrating diagrams

–        Note taking

Photographs and charts on

The parts of blood circulatory system

SCIA – 7 pg 8

TG – 7 pg 7

-PSC-7 PB pg9

-TG-7 pg6

 
2   Arteries By the end of this topic the learner should be able to identify arteries as parts of blood vessels and their functions. –        Discussion

–        Explanation

–        Demonstrating diagrams

–        Note taking

Photographs and charts on

The parts of blood circulatory system

SCIA – 7 pg 8

TG – 7 pg 6

-PSC-7 PB pg9

-TG-7 pg7

 
3   Veins By the end of this topic the learner should be able to identify veins as parts of blood vessels and their functions. –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Photographs and charts on

The parts of blood circulatory system

SCIA – 7 pg 7-9

TG – 7 pg 6

-PSC-7 PB pg9

-TG-7 pg6

 
4   Capillaries  By the end of this topic the learner should be able to do a identify capillaries as parts of blood vessels and their functions. –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Photographs and charts on

The parts of blood circulatory system

 

SCIA – 7 pg 8-10

TG – 7 pg 6

-PSC-7 PB pg11

-TG-7 pg7

 
5   Structure function of heart  By the end of this topic the learner should be able to describe the structure and function of the heart 

 

–        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Photographs and charts on

The parts of blood circulatory system

SCIA – 7 pg 7-10

TG – 7 pg 7

-PSC-7 PB pg8-12

-TG-7 pg6

 
5 1 Drugs  Drugs  By the end of this topic the learner should be able to explain the meaning of drugs –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Tobacco

Cigarette

Medicine

Tea

Coffee

Beer bottle

SCIA – 7 pg 8

TG – 7 pg 7

-PSC-7 PB pg

-TG-7 pg

 
2   Drug misuse By the end of this topic the learner should be able to explain the meaning of drug misuse. –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Tobacco

Cigarette

Medicine

Tea

Coffee

Beer bottle

 

SCIA – 7 pg 8-10

TG – 7 pg 2

-PSC-7 PB pg11

-TG-7 pg

 
3   Meaning of drug abuse. By the end of this topic the learner should be able to explain the meaning of drug abuse. –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Tobacco

Cigarette

Medicine

Tea

Coffee

Beer bottle

SCIA – 7 pg 11-12

TG – 7 pg 7

-PSC-7 PB pg13

-TG-7 pg8

 
4   Commonly abused drugs

 

By the end of this topic the learner should be able to identify and describe the commonly abused drugs. Mild –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Tobacco

Cigarette

Medicine

Tea

Coffee

SCIA – 7 pg 13-20

TG – 7 pg 3

-PSC-7 PB pg15

-TG-7 pg7

 
5   ‘’ By the end of this topic the learner should be able to identify and describe the commonly abused drugs. (narcotic) –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Tobacco

Cigarette

Medicine

Tea

Coffee

SCIA – 7 pg 15-22

TG – 7 pg 8

-PSC-7 PB pg 17

-TG-7 pg9

 
6 1   Effect of drug abuse

health

By the end of this topic the learner should be able to describe health effects of drug abuse. –        Discussion Tobacco

Cigarette

Medicine

Tea

 

SCIA – 7 pg 16-22

TG – 7 pg 8

-PSC-7 PB pg 20

-TG-7 pg13

 
2   Social effect By the end of this topic the learner should be able to describe social effect of drug abuse –        Explanation Tobacco

Cigarette

Coffee

Beer bottle

posters

SCIA – 7 pg 17

TG – 7 pg 11

-PSC-7 PB pg20

-TG-7 pg12

 
3   Myth of HIV AND AIDS By the end of this topic the learner should be able to describe and dispel myths  about HIV and AIDS –        Demonstrating diagrams Poster

Pictures

Charts

SCIA – 7 pg 26

TG – 7 pg 11

-PSC-7 PB pg30

-TG-7 pg13

 
4   Misconception s

About HIV/AIDS

By the end of this topic the learner should be able to do a explain  and dispel misconception about HIV and AIDS Note taking Poster

Pictures

Charts

SCIA – 7 pg 27

TG – 7 pg 12

-PSC-7 PB pg30

-TG-7 pg

 
5   Care and support of people infect by HIV By the end of this topic the learner should be able to care and support people living with HIV and AIDS

 

–        Discussion Poster

Pictures

Charts

SCIA – 7 pg 28

TG – 7 pg 15

-PSC-7 PB pg31

-TG-7 pg15

 
8 1 Environment Environment By the end of this topic the learner should be able to state and explain the meaning of environment –        Explanation Poster

Pictures

Charts

SCIA – 7 pg 29-32

TG – 7 pg 15

-PSC-7 PB pg36

-TG-7 pg16

 
2   Component of environment By the end of this topic the learner should be able to name and  explain major component of environment –        Demonstrating diagrams Soil

Plants

water

Charts

SCIA – 7 pg 33

TG – 7 pg 17

-PSC-7 PB pg37

-TG-7 pg

 
3 Plants Interdependence By the end of this topic the learner should be able to explain the meaning of interdependence. Note taking Soil

Plants

water

Charts

SCIA – 7 pg

TG – 7 pg 35

-PSC-7 PB pg

-TG-7 pg

 
4   In plants By the end of this topic the learner should be able to identify and describe the interdependence between plants –        Discussion Soil

Plants

water

Charts

SCIA – 7 pg 35

TG – 7 pg 18

-PSC-7 PB pg

-TG-7 pg20

 
5   Between plants and animals By the end of this topic the learner should be able to identify and describe the interdependence between plants and animals. –        Explanation Soil

Plants

water

Charts

SCIA – 7 pg 36

TG – 7 pg 16

-PSC-7 PB pg

-TG-7 pg16

 

 

9 1   Food chain By the end of this topic the learner should be able to describe and explain what a food chain is. –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Soil

Plants

water

Charts

SCIA – 7 pg 38

TG – 7 pg 17

-PSC-7 PB pg40

-TG-7 pg18

 
2   Crop pest By the end of this topic the learner should be able to explain the meaning of crop pest –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Soil

Plants

water

Charts

SCIA – 7 pg 38

TG – 7 pg 17

-PSC-7 PB pg41

-TG-7 pg18

 
3     By the end of this topic the learner should be able to describe the types of crop pest. –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Soil

Plants

water

Charts

SCIA – 7 pg 40

TG – 7 pg 19

-PSC-7 PB pg43

-TG-7 pg19

 
4     By the end of this topic the learner should be able identify field pest and explain their effects on crops –        Discussion

–        Explanation

–        Demonstrating chart

Pest

Weevils

Plants

Crop

SCIA – 7 pg 43

TG – 7 pg 19

-PSC-7 PB pg44

-TG-7 pg20

 
5     By the end of this topic the learner should be able to identify storage pest and explain their effect on crop

 

–        Explanation Discussion

–        Explanation

–        Demonstrating chart

Pest

Weevils

Plants

Crop

SCIA – 7 pg 46

TG – 7 pg 21

-PSC-7 PB pg46

-TG-7 pg22

 
10 1   Effects of pests on crops  By the end of this topic the learner should be able to explain the effects of pests on crops –        Demonstrating diagrams Pest

Weevils

Plants

Crop

SCIA – 7 pg 47

TG – 7 pg 23

-PSC-7 PB pg48

-TG-7 pg24

 
2   Control measures By the end of this topic the learner should be able to explain and identify some crop pest control measures –        Note taking Discussion

–        Explanation

Demonstrating chart

Pest

Weevils

Plants

Crop

SCIA – 7 pg 52

TG – 7 pg 25

-PSC-7 PB pg56

-TG-7 pg26

 
3 Animals Meaning of parasite By the end of this topic the learner should be able to explain the meaning the of parasites –        Discussion

–        Explanation

–        Demonstrating chart

Parasite

Tick

Plants

Crop

SCIA – 7 pg 53

TG – 7 pg 26

-PSC-7 PB pg54

-TG-7 pg27

 
4   External parasite

 

By the end of this topic the learner should be able to identify and describe the external parasite  –        Explanation Discussion

–        Explanation

–        Demonstrating chart

Parasite

Tick

 

SCIA – 7 pg 54

TG – 7 pg 28

-PSC-7 PB pg60

-TG-7 pg29

 
5   Internal parasite By the end of this topic the learner should be able to identify and describe the internal parasites. –        Demonstrating diagrams Parasite

Tick

 

 

SCIA – 7 pg 54

TG – 7 pg 25

-PSC-7 PB pg56

-TG-7 pg26

 

 

11 1   Effects of parasite  By the end of this topic the learner should be able to describe and state the effect of external parasites on livestock. –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Parasite

Tick

 

SCIA – 7 pg 54

TG – 7 pg 26

-PSC-7 PB pg56

-TG-7 pg53

 
2     . By the end of this topic the learner should be able to describe and state the effect of internal parasites on livestock. –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Parasite

Tick

 

SCIA – 7 pg 55

TG – 7 pg 26

-PSC-7 PB pg57

-TG-7 pg28

 
3   Control of parasite By the end of this topic the learner should be able to describe and explain control the internal parasite –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Parasite

 

 

SCIA – 7 pg60

TG – 7 pg 26

-PSC-7 PB pg68

-TG-7 pg30

 
4     By the end of this topic the learner should be able to describe and explain control the external  parasite –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Parasite

Tick

hide

 

SCIA – 7 pg 60

TG – 7 pg 27

-PSC-7 PB pg69

-TG-7 pg28

 
5   Human intestinal worms By the end of this topic the learner should be able to describe and explain control the human intestinal worms

 

–        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Parasite

Tick

hide

SCIA – 7 pg 66

TG – 7 pg 30

-PSC-7 PB pg69

-TG-7 pg34

 
12 1     By the end of this topic the learner should be able to describe and explain control the human intestinal worms

 

–        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Charts

pictures

SCIA – 7 pg 69

TG – 7 pg 32

-PSC-7 PB pg70

-TG-7 pg335

 
2-5   Revision By the end of this topic the learner should be able to revise and answer questions on the topics he/she covered in the term –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Charts

pictures

SCIA – 7 pg 69

TG – 7 pg

-PSC-7 PB pg71

-TG-7 pg

 

Science schemes of work

Science schemes of work for standard ___7____TERM___2____YEAR________

WEEK LESSON TOPIC SUB-TOPIC OBJECTIVES ACTIVITIES RESOURCES/ REFERENCES REMARKS
1

 

 

 

 

2

1 Water Water pollution

 

By the end of this topic the learner should be able to explain the meaning of water pollution –        Discussion

–        Explanation

–        Demonstrating diagrams

Charts

Pictures

Water

SCIA – 7 pg 59

TG – 7 pg 30

-PSC-7 PB pg60

-TG-7 pg33

 
2     By the end of this topic the learner should be able to explain ways in which water get polluted –        Discussion

–        Explanation

–        Demonstrating diagrams

Charts

Pictures

Water

SCIA – 7 pg 60

TG – 7 pg 30

-PSC-7 PB pg64

-TG-7 pg34

 
3   Effects of water pollution By the end of this topic the learner should be able to describe effect of water pollution on plants –        Discussion

–        Explanation

–        Demonstrating

–        obsevation

Charts

Pictures

Water

SCIA – 7 pg60

TG – 7 pg 30

-PSC-7 PB pg65

-TG-7 pg35

 
4     By the end of this topic the learner should be able to describe effect of water pollution on animals –        Discussion

–        Explanation

–        Demonstrating

Resource person SCIA – 7 pg 60

TG – 7 pg 29

-PSC-7 PB pg65

-TG-7 pg35

 
5     By the end of this topic the learner should be able to describe effect of water pollution on soils –        Discussion

–        Explanation

–        Demonstrating

 

Charts

Pictures

Water

SCIA – 7 pg61

TG – 7 pg 31

-PSC-7 PB pg68

-TG-7 pg32

 
3 1   Controlling water pollution By the end of this topic the learner should be able to explain ways of controlling water pollution on plant –        Discussion

–        Explanation

–        Demonstrating

 

Charts

Pictures

Water

SCIA – 7 pg61

TG – 7 pg 31

-PSC-7 PB pg69

-TG-7 pg36

 
2     By the end of this topic the learner should be able to explain ways of controlling water pollution on animals –        Discussion

–        Explanation

–        Demonstrating

Charts

Pictures

Water

SCIA – 7 pg 61

TG – 7 pg 32

-PSC-7 PB pg62

-TG-7 pg38

 
3     By the end of this topic the learner should be able to explain ways of controlling water pollution on soils –        Discussion

–        Explanation

–        Demonstrating

 

Charts

Pictures

Water

SCIA – 7 pg 62

TG – 7 pg 32

-PSC-7 PB pg67

-TG-7 pg40

 
4   Conserving water By the end of this topic the learner should be able to describe ways of conserving water by harvesting –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Charts

Pictures

Water

SCIA – 7 pg 62

TG – 7 pg 32

-PSC-7 PB pg67

-TG-7 pg32

 
5     By the end of this topic the learner should be able to describe ways of conserving water by water recycling –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Charts

Pictures

Water

SCIA – 7 pg 67

TG – 7 pg 35

-PSC-7 PB pg70

-TG-7 pg43

 
4 1     By the end of this topic the learner should be able to describe ways of conserving water by reusing –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Charts

Pictures

Water

SCIA – 7 pg 80

TG – 7 pg

-PSC-7 PB pg86

-TG-7 pg

 
2     By the end of this topic the learner should be able to describe ways of conserving water by using water sparingly –        Discussion

–        Explanation

–        Demonstrating

 

Charts

Pictures

Water

SCIA – 7 pg 82

TG – 7 pg 46

-PSC-7 PB pg88

-TG-7 pg43

 
3     By the end of this topic the learner should be able to describe ways of conserving water by mulching and shading –        Discussion

–        Explanation

–        Demonstrating

 

Mulches SCIA – 7 pg84

TG – 7 pg 43

-PSC-7 PB pg90

-TG-7 pg46

 
4     By the end of this topic the learner should be able to describe ways of conserving water by storing water in dams –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Trip to dam SCIA – 7 pg

TG – 7 pg 44

-PSC-7 PB pg90

-TG-7 pg43

 
5     By the end of this topic the learner should be able to answer topical question in the topic water –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Charts

Pictures

Water

SCIA – 7 pg 90

TG – 7 pg 45

-PSC-7 PB pg93

-TG-7 pg55

 
5 1 Soil Soil fertility By the end of this topic the learner should be able to explain the meaning of fertilizers –        Discussion

–        Explanation

–        Demonstrating

 

Charts

Pictures

Fertilizers

SCIA – 7 pg 88

TG – 7 pg

-PSC-7 PB pg93

-TG-7 pg67

 
2   Types of fertilizer By the end of this topic the learner should be able to identify straight fertilizers –        Discussion

–        Explanation

–        Demonstrating

 

Charts

Pictures

Fertilizers

SCIA – 7 pg

TG – 7 pg 47

-PSC-7 PB pg94

-TG-7 pg67

 
3     By the end of this topic the learner should be able to identify compound fertilizers –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Charts

Pictures

Fertilizers

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg95

-TG-7 pg67

 
4   Types of manure By the end of this topic the learner should be able to identify green manure –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Charts

Pictures

Fertilizers

Manure

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg95

-TG-7 pg67

 
5     By the end of this topic the learner should be able to identify and explain farmyard manure –        Discussion

–        Explanation

–        Demonstrating

 

Charts

Pictures

Fertilizers

Manure

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg95

-TG-7 pg67

 
6 1     By the end of this topic the learner should be able to identify and explain how to make compost manure –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Charts

Pictures

Fertilizers

Manure

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg96

-TG-7 pg67

 
2     By the end of this topic the learner should be able to discuss and explain advantages of fertilizer –        Discussion

–        Explanation

–        Demonstrating

Charts

Pictures

Fertilizers

Manure

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg68

 
3     By the end of this topic the learner should be able to discuss and explain disadvantages of fertilizer –        Discussion

–        Explanation

–        Demonstrating

 

Charts

Pictures

Fertilizers

Manure

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg96

-TG-7 pg68

 
4     By the end of this topic the learner should be able to discuss and explain advantages of manure –        Discussion

–        Explanation

–        Demonstrating

 

Charts

Pictures

Fertilizers

Manure

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg97

-TG-7 pg68

 
5     By the end of this topic the learner should be able to discuss and explain disadvantages of manure –        Discussion

–        Explanation

–        Demonstrating

 

Charts

Pictures

Fertilizers

Manure

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg97

-TG-7 pg68

 
8 1 Energy Sources of electricity By the end of this topic the learner should be able to indentify different sources of electricity –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Batteries

Cell

Dynamo

 

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg98

-TG-7 pg68

 
2   Batteries By the end of this topic the learner should be able to identify and explain batteries as source of electricity –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Batteries

Cell

Dynamo

 

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg100

-TG-7 pg68

 
3   Simple electric circuit By the end of this topic the learner should be able to make a simple circuit using electricity –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Batteries

Cell

Dynamo

 

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg100

-TG-7 pg67

 
4   dynamos By the end of this topic the learner should be able to identify and explain dynamos as source of electricity to –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Batteries

Cell

Dynamo

 

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg102

-TG-7 pg

 
5   Hydro electric generators By the end of this topic the learner should be able to identify and explain HEP as source of electricity to –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Visit to HEP station

Chart

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg103

-TG-7 pg

 
9 1   Petrol driven generator

 

By the end of this topic the learner should be able to identify and explain petrol driven generators as source of electricity to –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Batteries

Cell

Dynamo

Charts

Pictures

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg104

-TG-7 pg

 
2     By the end of this topic the learner should be able to identify and explain wind driven turbines as source of electricity to –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Dynamo

Charts

Pictures

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg105

-TG-7 pg

 
3     By the end of this topic the learner should be able to identify and explain solar energy(panels) as source of electricity to –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Dynamo

Charts

Pictures

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg106

-TG-7 pg

 
4   Good and conductors By the end of this topic the learner should be able to investigate good conductors of electricity –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Dynamo

Charts

Pictures

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
5   Insulators By the end of this topic the learner should be able to investigate bad conductors of electricity –        Discussion

–        Explanation

–        Demonstrating

 

Batteries

Cell

Wires

Charts

s

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg107

-TG-7 pg

 
10 1   Electric appliance By the end of this topic the learner should be able to identify electrical appliances used at home –        Discussion

–        Explanation

–        Demonstrating

 

TV

radio

Iron box cooker

Electric cooker

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg108

-TG-7 pg

 
2     By the end of this topic the learner should be able to discuss the use of electrical appliances used at home to –        Discussion

–        Explanation

–        Demonstrating

 

TV

radio

Iron box cooker

Electric cooker

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg109

-TG-7 pg

 
3   Safety when dealing with electric appliances By the end of this topic the learner should be able to discuss safety measures when dealing with electricity (not touching the switch with wet hands) –        Discussion

–        Explanation

–        Demonstrating

 

TV

radio

Iron box cooker

Electric cooker

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg110

-TG-7 pg

 
4     By the end of this topic the learner should be able to discuss safety measures when dealing with electricity (not putting wires, stick pencil  ) –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Socket

Pencil

Wires

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg110

-TG-7 pg

 
5     By the end of this topic the learner should be able to discuss safety measures when dealing with electricity (not overloading sockets) –        Discussion

–        Explanation

–        Demonstrating

 

Socket

Pencil

Wires

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg111-118

-TG-7 pg

 
11 1   Lightning and safety measures By the end of this topic the learner should be able to demonstrate fitting lightning arresters as a safety measure –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

 

Pencil

Wires

Chart

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg119

-TG-7 pg

 
2     By the end of this topic the learner should be able to demonstrate avoiding walking in open field when raining as a safety measure –        Discussion

–        Explanation

–        Demonstrating

 

Chart SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg120

-TG-7 pg

 
3     By the end of this topic the learner should be able to demonstrate not sheltering under the trees when raining  as a safety measure –        Discussion

–        Explanation

–        Demonstrating diagrams

Chart SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg121

-TG-7 pg67

 
4     By the end of this topic the learner should be able to answer the questions under the topic energy correctly –        Discussion

–        Explanation

–        Demonstrating diagrams

Answering

Chart

 

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg1222

-TG-7 pg67

 
5     By the end of this topic the learner should be able to answer the questions under the topic energy correctly –        Discussion

–        Explanation

–        Demonstrating

 

Chart SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg123

-TG-7 pg

 
12 1-5   Revision By the end of this topic the learner should be able to answer the questions under the topic energy correctly –        Discussion

–        Explanation

–        Demonstrating

 

Chart SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 

 

Science schemes of work

Science schemes of work for standard ___7____TERM___3____YEAR________

 

WEEK LESSON TOPIC SUB-TOPIC OBJECTIVES ACTIVITIES RESOURCES/ REFERENCES REMARKS
1

 

 

 

 

2

1 Properties of matter Dissolving solids in water

 

By the end of this topic the learner should be able to identify solids that do not dissolve in water. –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Water , nail, coin, chalk wood, plastic SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
2     By the end of this topic the learner should be able to identify solids that dissolve in water. –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Oil

Fat

Milk

Water

Paraffin

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
3   Mixing liquids By the end of this topic the learner should be able to identify miscible liquids –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Oil

Fat

Milk

Water

Paraffin

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
4   Immiscible By the end of this topic the learner should be able to identify liquids that do not mix –        Discussion

–        Explanation

–        Demonstrating diagrams

–        observation

Oil

Fat

Milk

Water

Paraffin

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
5   Magnetic By the end of this topic the learner should be able to identify magnetic materials –        Discussion

–        Explanation

–        Demonstrating diagrams

Magnet

Copper

Tin

Iron

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
3 1     By the end of this topic the learner should be able to investigate non magnetic materials –        Discussion

–        Explanation

–        Demonstrating

 

Aluminium

Iron

Wood

Plastic 

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
2   Separating mixtures

Sieve

By the end of this topic the learner should be able to separate mixtures by sieving –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Sieve SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
3   picking By the end of this topic the learner should be able to separate mixtures by picking –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Pebbles

Grain

Maize

sand

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
4   Filtering By the end of this topic the learner should be able to separate mixtures by filtering –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Filter paper

Charcoal filter

Dirty water

cotton

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
5   Decanting By the end of this topic the learner should be able to separate mixtures by decanting –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Dirty water SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
4 1   Use of magnet By the end of this topic the learner should be able to separate mixtures by use of magnet –        Discussion

–        Explanation

–        Demonstrating

 

Magnet SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
2   Evaporation By the end of this topic the learner should be able to separate mixtures by evaporation –        Discussion

–        Explanation

–        Demonstrating

 

Source of fire

Salt

Sugar

Water

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
3     By the end of this topic the learner should be able to separate mixtures by sieving –        Discussion

–        Explanation

–        Demonstrating

 

Sieve SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
4     By the end of this topic the learner should be able to revise and answer question in the topic properties of mater –        Discussion

–        Explanation

–        Demonstrating

 

Revision paper

Books

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
5     By the end of this topic the learner should be able to revise and answer question in the topic properties of mater –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Revision paper

Books

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
5 1   Revision By the end of this topic the learner should be able to revise and answer question in the mid term examination –        Discussion

–        Explanation

–        Demonstrating

 

Revision paper

Books

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
2     By the end of this topic the learner should be able to revise and answer question in the mid term examination –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Revision paper

Books

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
3     By the end of this topic the learner should be able to revise and answer question in the mid term examination –        Discussion

–        Explanation

–        Demonstrating

 

Revision paper

Books

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
4     By the end of this topic the learner should be able to revise and answer question in the mid term examination –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Revision paper

Books

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
5       –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

  SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
7 1 Making work easier Friction By the end of this topic the learner should be able to explain the meaning of friction –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Ball bearing

Oil

Grease

Glossy surface

Rough surface

Treads

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
2     By the end of this topic the learner should be able to investigate friction –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Ball bearing

Oil

Grease

Glossy surface

Rough surface

Treads

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
3   Advantages of friction By the end of this topic the learner should be able to state the advantages of friction –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Ball bearing

Oil

Grease

Glossy surface

Rough surface

Treads

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
4   Disadvantages By the end of this topic the learner should be able to state the disadvantages of friction –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Ball bearing

Oil

Grease

Glossy surface

Rough surface

Treads

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
5   Increasing friction By the end of this topic the learner should be able to demonstrate how to increase friction –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Ball bearing

Oil

Grease

Glossy surface

Rough surface

Treads

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
8 1   Reducing friction By the end of this topic the learner should be able to demonstrate ways of reducing friction –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Ball bearing

Oil

Grease

Glossy surface

Rough surface

Treads

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
2 Parts of a lever Lever

Claw hammer

By the end of this topic the learner should be able to identify the position of fulcrum when claw hammer is in use –        Discussion

–        Explanation

–        Demonstrating

 

Claw hammer

Wood

Nail

 

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
3     By the end of this topic the learner should be able to identify the position of load when claw hammer is in use –        Discussion

–        Explanation

–        Demonstrating

 

Claw hammer

Wood

Nail

 

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
4     By the end of this topic the learner should be able to identify the position of effort when claw hammer is in use –        Discussion

–        Explanation

–        Demonstrating

 

Claw hammer

Wood

Nail

 

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
5   Crowbar By the end of this topic the learner should be able to identify the position of fulcrum  when crowbar is in use –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

Crowbar

stone

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
9 1     By the end of this topic the learner should be able to identify the position of load  when crowbar is in use –        Discussion

–        Explanation

–        Demonstrating diagrams

Crowbar

stone

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
2     By the end of this topic the learner should be able to identify the position of effort  when crowbar is in use –        Discussion

–        Explanation

–        Demonstrating diagrams

Crowbar

stone

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg

-TG-7 pg

 
3   Wheelbarrow By the end of this topic the learner should be able to identify the position of fulcrum  when wheelbarrow is in use –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

A wheel barrow

Load

sand

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg117

-TG-7 pg

 
4     By the end of this topic the learner should be able to identify the position of load  when wheelbarrow is in use –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

A wheel barrow

A load

SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg118

-TG-7 pg

 
5     By the end of this topic the learner should be able to identify the position of effort  when wheelbarrow is in use –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

A wheel barrow SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg119

-TG-7 pg67

 
10 1-5     By the end of this topic the learner should be able to revise and answer question in the term examination –        Discussion

–        Explanation

–        Demonstrating diagrams

Note taking

  SCIA – 7 pg

TG – 7 pg

-PSC-7 PB pg120

-TG-7 pg67

 

 

Education Hub Grade 6 KPSEA Exams with Answers {Latest}

Education Hub Grade 6 KPSEA Exam Papers with Answers {Latest} free downloads here:

Grade 6 Exams: Free Termly Assessment Exams, Notes & Schemes of Work

Grade 6 Free Termly Assessment Exams, Notes & Schemes of Work Grade 6 Exams: Free Termly Assessment Exams, Notes & Schemes of Work Access free Grade…

KPSEA Grade 6 Exams

Get free KPSEA Grade 6 Exams below. Download at no extra cost.

𝐊𝐏𝐒𝐄𝐀 Grade 6 Exams: 𝐂𝐨𝐮𝐧𝐭𝐲 𝐂𝐨𝐦𝐦𝐢𝐬𝐬𝐢𝐨𝐧𝐞𝐫 𝐢𝐬𝐬𝐮𝐞𝐬 𝐬𝐭𝐞𝐫𝐧 𝐰𝐚𝐫𝐧𝐢𝐧𝐠 𝐨𝐧 𝐞𝐱𝐚𝐦 𝐢𝐧𝐭𝐞𝐠𝐫𝐢𝐭𝐲

𝐊𝐏𝐒𝐄𝐀: 𝐂𝐨𝐮𝐧𝐭𝐲 𝐂𝐨𝐦𝐦𝐢𝐬𝐬𝐢𝐨𝐧𝐞𝐫 𝐢𝐬𝐬𝐮𝐞𝐬 𝐬𝐭𝐞𝐫𝐧 𝐰𝐚𝐫𝐧𝐢𝐧𝐠 𝐨𝐧 𝐞𝐱𝐚𝐦 𝐢𝐧𝐭𝐞𝐠𝐫𝐢𝐭𝐲 𝐊𝐏𝐒𝐄𝐀 Grade 6 Exams: Homa Bay County Commissioner Moses Lilan has called on all centre managers…

2022 KPSEA Timetable – Knec revised & Final Grade 6 Exam Timetable

The Kenya National Examinations Council, Knec, has released the final 2022 Kenya Primary School Education Assessment (KPSEA) 1.0    PAPERS DURATION IN THE 2022 KPSEA AND…

KPSEA Results released, uploaded on Knec portal (2023 Grade 6 exams results)

Grade 6 learners who sat for the 2023 Kenya Primary School Education Assessment (KPSEA) in 2023 will now know their results. The results have…

Knec grade 6 exams – Kenya Inter-Mediate Level Education Assessment (KILEA) Guidelines

KNEC: How Grade six exams will be done The Kenya National Examinations Council (KNEC) has unveiled its plan on how the pioneer national tests under…

Grade 6 Notes, Schemes of Work & Exams {Ultimate Downloads}

FREE GRADE 6 RESOURCES 1: Grade 6 CBC Exams, Free For Term 1 to 3 2:Grade 6 Latest Rationalized Notes 3: Grade 6 KPSEA Past Exam Papers 4: Grade 6 Rationalized…

Grade 6 CBC Exams, Free For Term 1 to 3

Get Grade 6 CBC Exams, Free For Term 1 to 3 here: G6-AGRINUTRITION G6-AGRINUTRITION-AUGUSTHOMEWORK (1) G6-COMPOSITION G6-CRE G6-CREATIVE-1 G6-CREATIVE-ARTS (1) G6-CREATIVE-ARTS G6-CREATIVE-ARTS-AUGUST-HOMEWORK (1) G6-ENGLISH (1) G6-ENGLISH (2) G6-ENGLISH G6-ENGLISH-AUGUSTHOMEWORK (1) G6-INSHA (1) G6-INSHA G6-INTEGRATED-SCIENCE (1) G6-INTEGRATED-SCIENCE G6-KISWAHILI (1) G6-KISWAHILI (2) G6-KISWAHILI G6-KISWAHILI-AUGUST-HOMEWORK (1) G6-MARKING-SCHEME (1) G6-MARKING-SCHEME G6-MATHEMATICS…

Grade 6 KPSEA Past Exam Papers

Download free Grade 6 Past KPSEA Exam Papers Below: CASS 2022 KPSEA CREATIVE ART AND SOCIAL GRADE 6 SAMPLE ENG 2022 KPSEA ENGLISH COMPOSITION KAPSEA FINAL PREDICTION 2023 ENGLISH…

Grade 6 KPSEA Candidates Put on Notice as KNEC Releases Full 2025 Examination Schedule

Grade 6 KPSEA Candidates Put on Notice as KNEC Releases Full 2025 Examination Schedule The Kenya National Examination Council has declared strict regulations for Grade…

Kiswahili Grade 6 CBC KPSEA Exams and Marking Schemes Free

GRADI YA SITA TERM KISWAHILI           Punda     Papa     Bunda     Pango       Bibi       Ninimajibuyamaamkuzihaya?   Shikamoo?                             _____________________   U haligani?                 _____________________   Hujambo?                              _______________________   Waambaje?                          _______________________   Habarizaasubuhi?                 ___________________       Jazamapengokwakutumiavielezimwafaka; alfajiri,   juzi,   polepole,    Ijumaa,   kipupwe ____________________ huwanabaridishadidi Tutarauka ______________ ilitusicheleweshuleni. Benderahupeperushwakia______________________ ___________________ tulikuwanawagenikwetu. _________________ ndiomwendo.   Kamilishamethalihizi Pole polendio…

Agriculture Grade 6 CBC KPSEA Exams and Marking Schemes Free

GRADE SIX TERM  ASSESSMENT AGRICULTURE  ACTIVITIES         Exposed  plant roots on a bare flat ground  is an indication of Splash erosion. Sheet erosion.   Gulley erosion. …

Science and Technology Grade 6 CBC KPSEA Exams and Marking Schemes Free

    Science and Technology Below is a simplified diagram of the circulatory system. Which pair of blood vessels carry blood with carbondioxide?   P, Q P, S …

2024 KPSEA Exam Papers

Download free 2024 KPSEA Exam Papers here. Get unlimited access to Grade 6 and KPSEA free CBC resources below: KPSEA Exam Papers Grade 6 KPSEA, Signal, Targeter,…

Social Studies Grade 6 CBC KPSEA Exams and Marking Schemes Free

GRADE SIX TERM ASSESSMENT SOCIAL STUDIES       Which pattern is formed by the population | 25 distribution in Nuru Area?   nucleated sparse dense linear Nuru…

CBC Grade 6 KPSEA Exams, Notes, Schemes & Assessment Materials

Looking for free CBC Grade 6 KSEA Exams, Notes, Schemes & Assessment Materials? The good news for you is that these and many more…

Kiswahili Grade 6 CBC KPSEA Exams and Marking Schemes Free

GRADI YA SITA TERM KISWAHILI     Download more free unlimited Kiswahili resources here: Educationnewshub.co.ke KISWAHILI USHAIRI NOTES WITH EXAMPLES AND GUIDES Kiswahili Fasihi, English Literature Notes, Guides, Revision Questions…

KPSEA Exam Papers Free Downloads

KPSEA Exam Papers Free Downloads KPSEA 2023 SUPER PREDICTION (3).pdf KPSEA 2023 NATIONAL MOCK 1 (2).pdf KPSEA 2023 TRANS-COUNTY MOCK 1 (2).pdf ENG KPSEA 2023 REGIONAL MOCKS (2).pdf INT…

Maths Grade 6 CBC KPSEA Exams and Marking Schemes Free

GRADE SIX  2023   ASSESSMENT MATHEMATICAL  ACTIVITIES       In a wedding ceremony, Grade six learners carried 2 342 chairs. They later went for 1 009 more chairs….

Grade 6 CBC KPSEA Exams and Marking Schemes Free

GRADE SIX TERM   ASSESSMENT MATHEMATICAL  ACTIVITIES       In a wedding ceremony, Grade six learners carried 2 342 chairs. They later went for 1 009 more chairs….

TOP STUDENT MATHEMATICS REVISION KIT (TOPICAL QUESTIONS & ANSWERS)

MATHEMATICS 1

PART I

 SECTION A: 

  1. Use logarithm tables to evaluate                      (4 mks)

 

0.0368 x 43.92

361.8

 

  1. Solve for x by completing the square                           (3mks)

2x2  – 5x + 1 = 0

 

  1. Shs. 6000 is deposited at compound interest rate of 13%. The same amount is deposited at 15% simple interest. Find which amount is more and by how much after 2 years in the bank       (3mks)

 

  1. The cost of 3 plates and 4 cups is Shs. 380. 4 plates and 5 cups cost Shs. 110 more than this. Find the cost of each item.                                                                                                        (3mks)

 

  1. A glass of juice of 200 ml content is such that the ratio of undiluted juice to water is 1: 7 Find how many diluted glasses can be made from a container with 3 litres undiluted juice       (3mks)

 

  1. Find the value of θ within θ  < θ < 360if  Cos (2 θ + 120) =  γ3                                                     (3mks)

2

 

  1. A quantity P varies inversely as Q2 Given that P = 4 When Q = 2.  , write the equation joining P and  Q

hence find P when Q = 4                                         a                                                                      (3mks)

 

  1. A rectangle measures 3.6 cm by 2.8 cm. Find the percentage error in calculating its perimeter.                                                                                                                                                 (3mks)

 

  1. Evaluate:          11/6   x  ¾  –  11/12                                                                                              (3mks)

½  of 5/6

 

  1. A metal rod, cylindrical in shape has a radius of 4 cm and length of 14 cm. It is melted down and recast into small cubes of 2 cm length. Find how many such cubes are obtained          ( 3mks)

 

  1. A regular octagon has sides of 8 cm. Calculate its area to 3 s.f.             (4mks)

 

  1. Find the values of x and  y if                                                                                                       ( 2 mks)

3          x          1   =     2

2          1          -1         y

 

  1. An equation of a circle is given by x2 + y2 – 6x + 8y – 11 = 0                                           (3mks)

Find its centre and radius

 

  1. In the figure given AB is parallel to DE. Find the value of x and y

 

 

 

 

 

 

 

 

  1. A line pass through A (4,3) and B(8,13). Find                                                  (6 mks)

(i)  Gradient of the line

(ii)  The magnitude of AB

(iii) The equation of the perpendicular bisector of AB.

 

  1. A train is moving towards a town with a velocity of 10 m/s. It gains speed and the velocity becomes 34 m/s after 10 minutes . Find its acceleration (2mks)

 

 

SECTION B:

 

  1. Construct without using a protractor the triangle ABC so that BC=10cm, angle ABC = 600 and

BCA = 450

  1. On the diagram , measure length of AC
  2. Draw the circumference of triangle ABC
  3. Construct the locus of a set of points which are equidistant from A and B.
  4. Hence mark a point P such that APB = 450 and AP = PB
  5. Mark a point Q such that angle AQB = 450 and AB = AQ

 

  1. (a) A quadrilateral ABCD has vertices A(0,2) , B(4,0) , C(6,4) and D(2,3). This is given a

transformation by the matrix   -2  0  to obtain its image AI B I CI DI. under a second transformation

0 – 2

which has a rotation centre (0,0) through –900 , the image AII  BII  CII  DII  of AI  BI  CI  DI  is

obtained.    Plot the three figures on a cartesian plane                                                         (6mks)

(b)  Find  the  matrix of  transformation  that  maps  the  triangle  ABC  where A (2,2)   B (3,4)   C (5,2)

onto  A B C   where  A( 6,10)  B  (10,19 )  C ( 12, 13).                                                    ( 2mks)

 

 

 

 

19.

 

 

 

 

 

 

In the triangle OAB, OA = 3a , OB = 4b and OC = 5/3 OA.  M divides OB in the ratio 5:3

  1. Express AB and MC in terms of a and b
  2. By writing MN in two ways, find the ratio in which N divides
  3. AB
  4. MC

 

 

 

 

 

 

  1. In the figure below, SP = 13.2 cm, PQ = 12 cm, angle PSR = 80O and angle PQR = 900. S and Q are the centres       (8mks)

 

Calculate:

The area of the intersection of the two circles

The area of the quadrilateral  S P Q R

The area of the shaded region

 

 

 

 

 

 

 

 

 

 

 

  1. In an experiment the two quantities x and y were observed and results tabled as below
X 0 4 8 12 16 20
Y 1.0 0.64 0.5 0.42 0.34 0.28

 

  1. By  plotting  1/y  against x, confirm that y is related to x by an equation of the form

 

Y =      q

 

 

P + x

where p and q are constants.                                                                             (3mks)

 

(b)  Use your graph to determine p and q                                                                                   (3mks)

 

(c )  Estimate the value of   (i) y when x = 14

(ii) x when y = 0.46                                                             (2mks)

 

  1. A racing cyclist completes the uphill section of a mountain course of 75 km at an average speed of v km/hr. He then returns downhill along the same route at an average speed of (v + 20) km/hr. Given that the difference between the times is one hour, form and solve an equation in v.

Hence

  1. Find the times taken to complete the uphill and downhill sections of the course.
  2. Calculate the cyclists average speed over the 150km.

 

  1. In the diagram below, X is the point of intersection of the chords AC and BD of a circle. AX = 8 cm, XC = 4cm and XD = 6 cm
  2. Find the length of XB as a fraction
  3. Show that XAD is similar to XBC
  4. Given that the area of AXD = 6cm2, find the area of BXC
  5. Find the value of the ratio

Area of       AXB

Area of        DXC

 

 

 

 

 

 

 

  1. A town B is 55 km on a bearing of 0500. A third town C lies 75km due south of B. Given that D lies on a bearing of 2550 from C and 1700 from A, make an accurate scale drawing to show the positions of the four towns.                                                                                           (3mks)

(scale 1cm rep 10 km)

From this find,

(a) The distance of AD and DC in km                                                                     (2mks)

(b) The distance and bearing of B from D                                                               (2mks)

(c)  The bearing of  C from A                                                                                 (1mk)

 

MATHEMATICS I

PART 1

MARKING SCHEME             (100MKS)

 

 

  1. No. Log

=   3.6502

0.3681              2.5660

0.3682              1.6427 +                                -4  =  1.6502      = 2.8251

0.2087              Logs                            2

361.8                2.5585              + – v   ans  (4)         6.6850 x 10 -2

3.6502                                         = 0.06685

 

  1. 2 x2 – 5x + 1 = 0

x2 5 x + ½ = 0

2

x25 x   = ½

2

x – 5x  +     5 2    =  ½   +     5    (m)

2         4                        4

 

= x –  5    = ½ +      25    =  17                    (3)

4                   16        16

 

= x – 5/4  =  17/16   =    1.0625

x – 5/4    ±  1.031

X1 = -1.031 = 1.25 = 0.2192

X2 = 1.031  + 1.25  = 1.281

 

  1. A1 = P(1 + R/100)2 = 6000  x  113/100 x 113/100 = Sh. 7661.40

 

A2 = P + PRT/100         =   6000 + 15 X 2 = 6000 + 1800

100

=   Shs. 7800

 

Amount by simple interest is more by Shs.  (7800 – 7661. 40)

Shs. 138.60

  1. Let a plate be p and a cup c.

3p + 4c = 380  x 5             15p + 20c  = 1900

4p + 5c  = 490  x 4       16p + 20c  = 1960 

-p      -60                (m)

 

 

 

 

 

p = Shs 60

 

3(60) + 4 c = 380

4c = 380 –180 = 2000                (3)

c=   Shs. 50

Plate = Shs. 60 ,            Cup = Shs. 50            (A both)

 

  1. Ratio of juice to water = 1          :           7

In 1 glass = 1/8 x 200 = Sh 25

3 litres = 300 ml (undiluted concentrate)           (3)

No. of glasses =v    3000  =  120 glasses

25

 

  1. Cos (2 θ + 120) = 3/2 = 0.866

Cos 30 , 330, 390, 690, 750 ….

            2 θ + 120                = 330

2 θ = 210          ,     = 1050                                                                                        (3)

2 θ = 390 – 120   = 2700          θ2 1350

2 θ =  690 – 120  = 5700  ,       θ3 2850       (for 4 ans)

θ4= 315o    ( for >2)

2 θ =  750 – 120   = 6300 ,

 

  1. P =          k                      4  =  K/4           (substitution)

Q2                         9

K = 4 X 4         =            16

9                           9

P =  16   v         when Q = 4

9Q2

 

P =         16        =   1/9              (A)                 (3)

9x4x4

 

  1. The perimeter = (3.6 + 2.8 ) x 2 = 12.8 cm

Max perimeter = (3.65 + 2.85) x 2 = 23 cm    Expressions

% error =   13 –12.8     x  100    m         =     0.2        x     100  (3)

12.8                                     12.8

= 1.5620%        (A)

 

  1.      1 1/6 x ¾  – 11/12   = (7/6 x ¾ )  -11/12         =  7/8 – 11/12   =   21-22  

½  of 5/6                       ½ of 5/6                        5/12              5/12

= -1/24    = -1  x 12    =  -1

5/12        24   5          10       (3)

 

  1. Volume of rod = П r2h = 22/7 x 4  x 14 = 704cm3                (m)

                    Volume of each cube = 2x2x2 = 8 cm3                         A

 

No. of cubes = 704 /8  = 88 cm3   A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

< AOB = 360    = 450

                          8

Tan 67.5 =  h

4

h = 4 x 2.414                A

=  9.650cm

Area of 1 triangle = ½ x 8 x 9.656 x 8 cm = 38.628 x 8   vm

Octagon area  =  38.628 x 8      m

=  309.0 cm2        (A)

 

  1. 3   2        -1             2

=

2              1          -1           y

 

3 – x = 2       (1)       x = 1                          (2)

2 –  1 = y                 y = 1  (A)

 

  1. x 2 + y2 – 6x + 8y – 11 = 0

x2 – 6x + (-3)2 + y2 + 8y + (4)2 = 11 + (-3)2 + (4)2         (completing the square)

(x – 3)2 + (y+4)2 = 11 + 9 + 16 = 36

(x – 3)2 + (y + 4)2 = 62                                                                                          

Centre is  (3, -4)

Radius       = 6 units           As                                            (3)

 

 

14.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figs A C B  and D C E are similar

AB       =          AC       =  and   AB       =          BC

                         DE                    DC                 DE                   CE

 

10    =  6 + x

3          6

= 10   =  15 + y,     m

3            y                                                    60 = 18 + 3x

10y  = 15 + 3y                                                   3x = 42

7y = 15                                                                x = 14

 

y = 15/7              (A)                                                                             (3)

A (4 , 3)           B(8,13)

 

  1. (i) gdt          = change in y    = 13-3 = 10     =  5

change in x       8-4       4          2

 

(ii)      Mag  AB  =  8     -4           4                                                    =

13 -3         10

Length =   Ö42 + 10   = Ö116 = 10.77 units

(iii)   Mid point  = 4 +8  ,    3 + 3

2             2

=  (6, 8)    (mid point)                                                (5 mks)

gdt of perpendicular to AB = -ve rec. of 5/2

-2/5

Eqn is  y = -2/5 x + c

8 = -2/5  x 6 + c    =  40  = -12  +  5c

= c = 52/5

 

y = -2/5 x + 52/5        (A)

 

 

  1. Acceleration = Change in velocity

Time

= (34 – 10) m/s                  = 24 m/s

60 x 10                                600

 

= 0.04m/s2-                                (2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Triangle                                    (8)

AC = 9cm

Circumference Centre

Circle

Perpendicular bisector of AB

P

Q

 

 

 

  1. (b) a b   2       3          5        6          10        12

c          d   2       4          2        10        19        13

 

2a +2b = 6  x 2       = 49 + 4b = 12

3a + 4b = 10             3a + 4b = 10

a     = 2              4 + 2b = b

 

2c + 2d = 10×2 = 4c + 4d = 20                2 b = 2  b = 1

3c + 4d  = 19        3c + 4d  = 19

c           = 1

2 (1)  + 2d = 10

2d = 8                           Matrix is           2          1      (A)

d = 4                                                  1          4

 

 

 

 

 

OC = 5/3 (31) = 5A

 

19.

 

 

(a)  = AO + OB                         MC = MO + OC

= -3a  = 4b                         = -5/8 (4b) + 5

= 5A – 5/2 b

 

(b) MN = 5 Mc     = 3(5a – 5/2 b)

= 5 s a – 5/2 s b

 

MN = BN + BN

=  3/8 (4 b) + (1 – t) (-BA)

=  3/8 (4 b) + (1 – t)(3a – 4 b)

=  3/2  b + 3 ta –4b + 4tb

= (3-3t) a (4t – 5/2)b

 

MN = MN

= 5 s a – 5/2  sb = (3-3t)a +   (4t – 5/2 )b

=  5 a =  3 – 3t       = 5s + 3t =3

= -5/2 s = 4t –5/2  v     5s + 8t = 5 

-5t = -2            t = 2/5

5 s   = 3 – 3(2/5)

= 3 – 6/5 = 9/5

= 3 – 6/5 = 9/5

s = 9/25

 

(i)    AN :     NB = 2 : 3

 

(ii)   MN :    9   :  16

 

 

 

 

 

 

 

 

20.

 

 

θ x pr2

360

 

  1. Area of sector SPR =  80/360 x 13.2 x 13.2 x 3.142

=  121.6

Area of triangle SPR ½ x 13.2  x 13.2 x sin 80

= 85.8 cm2

(m of area of ) A (at least one)

(m of area)  A(at least one)

Area of segment = 121.6 – 85.8

= 35.8 cm2

Area of sector QPR = 90/360 x 3.142 x 12 x12

 

Area of  PQR = ½ x 12 x 12 = 722

                    Area of segment = 113.1 – 72

= 41.1cm2

Area of intersection = (35.8 + 41.1) = 76.9 cm2

 

b).  Area of quadrilateral  = Area of   PQR + SPR

=  85.8 + 72 = 157.8cm2

Area of shaded region  =  Area of Quadrilateral – Area of sector SPR

=  157.8 – 121.6

=  36.2 cm2

 

 

  1. y = q                   p + x = q                       1  =  x + p

p + x                          y                      y      q    q

 

Gradient  = 1/q   at (0, 0.95)  (8,2.0)  (8,2.0)  gradient   =  2.0 – 0.95  =  1.05

8                 8

1          =  0.1312

q

=  1      =  7.619

0.1312

q =  7.62.

 

y(1/y)  Intercept   p    =  0.95     P   =  0.95

q                7.62

 

p = 7.62 x 095  =  7.27

at x =  14,  y = 2.7

at  y = 0.46,  1/y  =  2.174

x  =  9.6.

 

 

 

 

 

 

  1. a) Distance  =  75km   uphill speed  =  vkm/h

uphill Time  =  75/v hrs

Downhill speed  = ( + 20)  km/h

Downhill Time    =        75         hrs.

                                             v + 20

Takes larger uphill

75  –  75             =  1

v         v+20

75 (v+20) – 75v            = 1

v(v + 20)                    1

75v + 1500 – 75v  =  v(v + 20)  =  v2 + 20v.

v2 + 20v  – 1500  =  0

v  =  – 20 +  202 – 4(1)  (-1500)

2(1)

v  =  –20 +  400 + 6000  = –20 + v6400

2                        2.

V1     =  –20  +  80      =  30km/hr

2

V2    =   – 20 – 80      X   impossible

2

speed uphill      =  30 km /hr,  T = 75  time =  2 ½ hrs

30

speed downhill =  50 km /hr  Time = 75      Time =  2 ½ hr

50

Average speed   =  Total  distance         =  150km          =  37.5 km/ hr

                                                Total time                      4hrs

 

X 0 4 8 12 16 20
Y 1.0 0.64 0.5 0.42 0.34 0.28
1/y 1.0 1.56 2.0 2.38 2.94 3.57

 

 

  1. A                 B

 

 

 

 

D                      C

 

A x X x C  =  BX .  XD

8 x 4           =  6BX

BX       =  8 x 142          =   16  

6                     3

X AD   =  XBC

XA       =  8    =  24      =  3

XB        16        16          2

XD      =    6      =    3

XC               4              2

 

<   AXD   =   BXC            (vertically opposite  <s))

                                                    SAS holds  :  they are similar.

LSF  =   3/2    ASF  =  (3/2)2  =  9/4

Area  A x A  =  6cm2    Area  B x C  =  6 x 9       =  27   =  13.5cm2

4

 

24.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. a) AD =   50km

DC   =   35km

BD  = 90km

Bearing is 020

Bearing is 134o                                                                                                       (8mks)

 

 

MATHEMATICS  I

PART II

 

SECTION (52 MARKS)

 

  1. Without using tables, simplify

1.43 x 0.091 x 5.04

2.86 x 2.8 x 11.7                                                                                             (3mks)

 

  1. Make x the subject of the formula if

y = a/x  +  bx                                                                                                    (3mks)

 

  1. Give the combined solution for the range of x values satisfying the inequality

2x + 1<  10 – x  <   6x – 1                                                                                 (3mks)

 

  1. A man is employed at a KShs. 4000 salary and a 10% annual increment. Find the total amount of money received in the first five years                                                                   (4mks)

 

  1. A town A is 56 km from B on a bearing 0620.  A third town C is 64 km from B on the bearing of 140o.  Find

(i) The distance of A to C                                                                                        (2mks)

(ii) The bearing of A from C                                                                                          (3mks)

 

  1. Expand (x + y)6 hence evaluate (1.02) to 3d.p.                                                         (3mks)

 

  1. Rationalise the denominator in                                                                               (2mks)

 

Ö 3

1 – v3

 

 

 

  1. The table below shows daily sales of sodas in a canteen for 10 days.

 

 Day 1 2 3 4 5 6 7 8 9 10
No. of 52 41 43 48 40 38 36 40 44 45

 

Calculate the 4 day moving averages for the data                                                     (3mks)

 

  1. Find the image of the line y = 3x = 4 under the transformation whose matrix is.

3mks

2           1

-1         2

 

  1. Three points are such that A (4 , 8), B(8,7), C (16, 5). Show that the three points are collinear                                                                                                                                          (3mks)
  2. Write down the inverse of the matrix 2 – 3 hence solve for x and y if

4     3

2x  – 3y = 7

4x + 3y +5                                                                                                        (3mks)

 

  1. Use the table reciprocals to evaluate to 3 s.f.                                     3mks

1/7  +  3/12  +  7/0.103

 

 

 

 

 

 

 

Given that O is the centre of the circle and OA is parallel to CB, and that angle

ABC =   1070,  find

(i) Angles AOC,                (ii) OCB               (iii) OAB                                                 (3mks)

  1. Two points A and B are 1000m apart on level ground, a fixed distance from the foot of a hill. If the angles of elevation of the hill top from A and B are 60o and 30o respectively, find the height of the hill                                                                                           (4 mks)
  2. Two matatus on a dual carriageway are moving towards a bus stop and are on level 5 km from the stop. One is travelling 20 km/hr faster than the other, and arrives 30 seconds earlier. Calculate their speeds.       (5mks)
  3. If log x = a and log y = b, express in terms of a and b

Log  x 3 

VY                                                                                                             (2mks)

 

SECTION B:

 

  1. The table below gives the performance of students in a test in percentage score.
Marks 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79
No. of Students  

2

 

4

 

7

 

19

 

26

 

15

 

12

 

5

 

Using an assumed mean of 44.5, calculate

  1. The mean
  2. The standard deviation
  3. Find the median mark

 

 

 

  1. Draw the graph of y = 2x2 – x – 4 for the range of x -3  = x  =  3.  From your  graph

State the minimum co-ordinates

  1. Solve the equations
  2. 2x2 – x – 4 = 0
  3. 2x2 – 3x – 4 = 0

 

 

 

 

 

 

  1. Two concentric circles are such that the larger one has a radius of 6cm and the smaller one radius of 4 cm. Find the probability that an item dropped lands on the shaded region           4mks

 

  1. Two unbiased dice are thrown. Find the probability of obtaining (4mks)
  2. A product of 6
  3. A sum of 8

iii. The same number showing                                                                             (4mks)

 

 

 

 

 

 

 

 

 

 

Two pulley wheels centers A and B are joined by a rubber band C D E F G H C round them.  Given that larger wheel has radius of 12 cm and AB = 20 cm, CD and GF are tangents  common to  both  wheels and that CBA = 60o), Find

  1. BD (Length)
  2. CD

iii.  Arc length CHG and DEF, hence find the length of the rubber.

 

  1. V A B C D is a right pyramid with a square base A B C D of side 5 cm. Each of its four triangular

faces is inclined at 750 to the base. Calculate

  1. The perpendicular height of the pyramid
  2. The length of the slant edge VA
  3. The angle between edge VA and base A B C D
  4. The area of the face VAB

 

  1. Plot the graphs of y = sin xo and y = cos 2xo on the same axes for –180 £ x £180o.

Use your graphs to solve the equation 2 sin x = cos  2x

 

  1. The depth of the water in a rectangular swimming pool increases uniformly from 1M at the shallow

end to 3.5m at the deep end.  The pool is  25m long  and  12m  wide. Calculate the volume of the pool

in cubic meters.

The pool is emptied by a cylindrical pipe of internal radius 9cm. The water flows through the pipe at speed of 3 metres per second.  Calculate the number of litres emptied from the pool in two minutes to the nearest 10 litres.          (Take II = 3.142)

 

 

 

  1. A rectangle A B C D is such that A and C lie on the line y = 3x. The images of B and D under a

reflection in the line y = x are B1 (-1, -3) and D1 (1,3) respectively.

  1. Draw on a cartesian plane, the line y = x  and mark points B1 and D1
  2. Mark the points B and D before reflection
  3. Draw the line y = 3x hence mark the points A and C to complete and draw the rectangle ABCD.

State its co-ordinates, and these of A1 and C1.

  1. Find the image of D under a rotation, through – 900, Center the origin.

 

 

MATHEMATICS I

PART II

MARKING SCHEME.

  1. 1.43 X 0.091 X 5.04100000        91 X 504           =        7/103

                        2.86 X 2.8 X 11.7             105             2 x 28 x 117 x 103

                                                                                                                                                                                    (3)

                                                                                                                         = 0.007            (A)

  1. y = a/x + bx yx = a + bx2

Either

bx2 – yx + a = 0

 

x =     y   ±   v y2 –  4ab

2b                                                         (3)

 

  1. 2x + 1£  10 – x  £    bx  -1

2x + 1 £ 10 – x            10 –x £  6x –1

3x £   9                                    11£   7x

x  £  3                               x   £ 11/7                                                             (3)

11/7 £  x   £   3

 

  1. a = 4000 r = 110/100   =      1.1   ( 4000, 4000 + 4000, 4400 + 0/100 (4400——)

(a and r)

Sn  =  a(r n – 1)       

                                    R  -1                                                     1.1 Log  = 0.04139

     X   5

0.20695

 

0.1                               (4)

= 4000 (1.15 –1)   (any)

1.1 –1                                                   4000 (1.6 – 1)

0.1

A  =  4000 ( 0.6105)

0.1

= Sh. 2442       =    Sh. 24,420       (A)                                       (4)

0.1

 

  1. (i) b2=  a2 + b2 – 2ab Cos B

= 642  + 562– 2(64) (56) cos 78

= 4096 + 3136  – 7168 (0.2079)

= 7232  – km 1490.3

 

b2  = 5741.7  = 5.77 km                  (5)

 

(ii)        b                a

            Sin B          Sin A

 

75.77    =      64

Sin 78         sin A         Sin A = 64 x 0.9781     

75.77                   

Sin A = 0.08262

A  = 55.70  (or B = 46.30)

 

Bearing = 90 – 28 – 55.7

= 0.06.30                       (A)

 

  1. (x + y) 6 =  1 (x) 6 (y)0 + 6 (x)5 (y)1+15(x)4 (y)2 + 20x3y3 + 15x2y4 + 6xy5 + y6

(1.02)6 = (1 +0.02)6 x = 1

y = 0.02

 

(1.02)6 = 1+6 (0.02) + 15 (0.02)2 + 15(0.02) + 20(0.02)3 + 15 (0.02)4                          

=  1 + 0.12  + 0.006 + 0.00016

= 1.12616

= 1.126  (to 3 d.p)                                                                                 (3)

 

  1.       3(1 +  3)                 =  3  +  3          3 + v3

(1-  3)(1+  3)                     1-3                          2

 

  1. Moving averages of order 4

M1        =  52 + 41 + 43 + 48                  184       = 146

4                                   4

M2            184 – 52 + 40   = 172  = 43                               for 7

4                 4                                   for > 4

M3             = 172– 40 + 38 = 170    = 42.5

4                     4

M4             170 – 38+36  = 168   = 42

4                  4

M5        = 168 – 36 + 40 = 173    = 43                (3)

4                4

M6             = 172 – 40 + 44 = 176    = 44

4              4

M7             = 176 – 44 + 45 = 177    = 44.25

4             4

 

  1. y = 3x + 4

A(0,4) B (1,7) Object points

                                                A         B          A         B

2          1          0          1          4          9

=

-1         2          4          7          8          13

Y =  Mx + C

M = 13 – 8  =  5  = 1

9-4                  5     1

 

y = x+c                                  y = x + 4

8 = 4 + c    c  = 4

 

  1. AB = 8     -4                        4                      BC =   16      – 8                        -8     for either

=

7     -8                      -1                                  5        – 7             -2

 

 

AB = ½   BC  and AB and BC share point B.

A,B,C  are collinear.                                                               (3)

 

  1. 2          -3

 

4          3          det. = 6 + 12 = 18

Inv.=     1         3          3

18

-4         2

1         3      3     2     -3   x       1           3   3       7

18                                            18

-4    2      4       2  y                     -4  2       5

x                       36

1

y          18        -18                    (3)

x = 2, y = -1      (A)

 

  1. 1/7 + 3/12.4 + 7/0.103

1/7 + 3/1.24 x 10-1 + 7/1.03 x 10-1

 

  0.1429 + 3(0.8064) + 7 x 10 (0.9709)

10

= 0.1429 + 0.2419 + 67.96                                 (3)

=70.52                             (A)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. (i) ADC = 2×73

= 1460

 

(ii) OCB = x = 180 – 146 = 34

(iii) 360 – 107 – 146 – 34

= 73 0

 

  1. Tan 300 = y/x y  =  x tan  30

Tan 600  = 1000 + y       ;     y = x tan 60 – 1000

X

X tan 300  = x tan 60 – 1000

0.5773 x = 1.732x – 1000

1.732x – 0.577 = 1000

1.155x = 1000

x = 1000

1.155           = 866.0 m         (A)                   (4)

 

 

  1. 5 km Slower speed = x km/hr

Time    = 5/x

Faster = (x+20) k/h

Time = 5/x=20            T1 – T2 = 5/x  – 5/x+20 = 30/3600

5 (x+20) –5x       1

x(x+20) 120

120 (5/x + 100 – 5x) = x2 + 20x             (5)

x2 + 20x – 12000

x = –20      400 + 48000

2

x = -20 ±  220

2

Spd = 100 km/h

And x = 120 km/h                                 (A)

  1. Log x = a log y = b

Log  x3  = Log x3  –  log y ½

y

= 3 Log x – ½ Log y

= 8a –  ½ ab

 

SECTION B

 

17.

Marks Mid point (x) d = x-44.5 F E = d/10 Ft T2 Ft2   v
0-9 4.5 -40 2 -4 -8 16 32
10-19 14.5 -30 4 -3 -12 9 36
20-29 24.5 -20 7 -2 -14 4 28
30-39 34.5 -10 19 -1 -19 1 19
40-49 44.5 -0 26 0 0 0 0
50-59 54.5 -10 15 1 15 1 15
60-69 64.5 20 12 2 24 4 48
70-79 74.5 30 5 3 15 9 45

=90                              =1                                =223

 

 

(a)   Mean = (1 / 90 x 10) + 44.5 = 44.5 + 0.111

= 44.610

 

(b)   Standard deviation = 10  233/90  – (1/90)2                        

                                                            10  2.478  – 0.0001                              (8)

10   2.478

10 x 1.574  = 15. 74    (A)

(c)    Median 45.5th value  = 39.5  + (13.5 x 10/ 26)

39.5 + 5.192                 (A)

44.69

 

(a)     The probability  = Shaded area

                                     Large circle area

Shaded area = ПR2 – П r2

= 22/7 (42 – 32) v  = 22/7 x 7  = 22

            Large area  = 22/7 x4x4 = 352/7 (A)

Probability = 22         = 22  x  7 =    7

352/7            352      16

 

(b)

  1 2 3 4 5 6
1 1,1 1,2 1,3 1,4 1,5 1,6
2 2,1 2,2 2,3 2,4 2,5 2,6
3 3,1 3,2 3,3 3,4 3,5 3,6
4 4,1 4,2 4,3 4,4 4,5 4,6
5 5,1 5,2 5,3 5,4 5,5 5,6
6 6,1 6,2 6,3 6,4 6,5 6,6

(M)

 

(i)    P(Product of 6) = P((1,6) or (2,3) or (3,2) or (6,1))

= 4/36   =  1/9

(4)

(ii)   P (sum of 8)   = P( (2,6) or (3,5) or (4,4) or (5,3) or (6,2) )

= 5/36               (A)

 

(iii)  P (same number)  = P (1,1) or (2,2) or (3,3) or (4,4) or (5,5) or (6,6)

6/36  = 1/6   (A)

 

 

 

 

 

 

 

 

 

 

(i)         Cos 60   = x/20 x = 20 x 0.5  = 10 cm

BD = 12 – 10 = 2 cm

 

(ii)          CD = y  Sin 60  = y/20                        y = 20x 0.8666

CD = 17.32 cm

 

 

 

 

(iii)        CHG  = 120        reflex  = 2400

CHG = 240/360 x 2 x p x r

= 50.27

DBF = 1200/360  x 2 x  П x  r  =  1/3 x 2 x 3.142 x 2

=  4.189                               (A)

Length C D E f G H C  =          50.27 + 2(17.32) + 4.189

= 89.189                     (A)

 

  1. (a) From the diagram, XO = 5/2 = 2.5

Tan 750 = VO/2.5          v m

VO  =  2.5 x 3.732

 

Perpendicular height  = VO  = 9.33 cm

2                      (A)

  1. Diagonal of base = 52 + 52  = 50
        Length of diag.   50       = 7.071    = 5.536

VA2 = AO2 + VO2     (m)

3.5362  + 9.32

12.50 + 87.05

= 99.55 = 9.98 cm2        (A)                  (8)

 

 

(c )                   = VAO  Tan =      9.33     = 2.639

3.536

VAO = 69.240                                                (A)

 

 

(d)                    Cos VBA = = 2.5 /9.98   = 0.2505

VBA = 75.490

Area VBA = ½  x 5  x 4.99 x sin 75.45             m  ( or other perimeter)

= 5 x 4.99 x   0.9681

= 24.15 cm2                  (A)

 

  1. Volume = cross – section Area x L

X-sec Area = (1 x 25)  +  (½  x 25 x 2.5)

=  25 + 31.25  =  56. M

Volume  = 56.25 x 12

= 675 m3                               

            Volume passed / sec  = cross section area x speed

= П r2 x l           = 3.14  x  9/100 x  9/100  x 3                 (8)

= 0.07635  m3 /sec         v (M)

Volume emptied in 2 minutes

= 0.07635 x 60 x 2

= 9.162 m2                (A)

1 m3  = 1000 l

= 9.162 litres

= 9160 litres                 (A)

 

 

 

 

 

24.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MATHEMATICS II

PART I

 

SECTION A (52 MARKS)

 

  1. Use tables to evaluate

3Ö 0.09122 + Ö 3.152                                                           (5mks)

0.1279 x 25.71

  1. Simplify  (a – b)2

a2 – b2                                                             (2mks)

 

 

  1. The gradient function of a curve that passes through point: (-1, -1) is 2x + 3.

Find the equation of the curve.                                                                               (3mks)

  1. Find the value of k for which the matrix k     3

has no inverse.   (2mks)                            3     k

  1. Without using tables, evaluate       log 128 – log 18

log 16 – log 6                                                          (3mks)

  1. Find the equation of the locus of points equidistant from point L(6,0) and N(-8,4). (3mks)
  2. The value of a machine is shs. 415,000. The machine depreciates at a rate of 15% p.a. Find how many years it will take for the value of the machine to be half of the original value. (4mks)
  3. Use reciprocal tables to evaluate to 3 d.p. 2             1   

0.321           n2.2                                          (4mks)

  1. Using the trapezium rule, estimate the area bounded by the curve y = x2, the x – axis and the co-ordinates x = 2 and x = 5 using six strips. (4mks)
  2. Solve the equation for 00 £ q £ 3600 and Cos2q + ½ Cosq = 0 (3mks)
  3. Point P divides line MK in the ratio 4:5. Find the co-ordinates of point P if K is point (-6,10) and M is

point (3,-8)                                                                                                                          (3mks)

  1. How many multiples of 3 are there between 28 and 300 inclusive. (3mks)
  2. The line y = mx – 1, where m is a constant , passes through point (3,1). Find the angle the line makes with the x – axis. (3mks)
  3. In the figure below, AF is a tangent to the circle at point A. Given that FK = 3cm, AX = 3cm, KX = 1.5cm and AF = 5cm, find CX and XN. (3mks)

 

 

 

 

 

 

 

 

 

 

 

  1. Make X the subject of the formula (3mks)

V = 3Ö k + x

sk – x

 

 

 

 

 

 

 

 

  1. Write down the inequalities that describe the unshaded region below. (4mks)

y

 

 

0.5         2                   x

 

-1.5

-2

 

      SECTION B (48 MARKS)

     

  1. Draw the graph of y = -x2 + 3x + 2 for –4 £ x £ 4. Use your graph to solve the equations

(i.) 3x + 2 – x2 = 0               (ii) –x2 – x = -2                                                       (8mks)

 

  1. The marks obtained by Form 4 students in Examination were as follows:

 

 

Marks 0-9 10-19 20-29 30-39 40-49 50-59
No. of students 2 8 6 7 8 10
Marks 60-69 70-79 80-89 90-99  
No. of Students 9 6 3    

      Using 74.5 as the Assumed mean, calculate:

(i) The mean mark

(ii) The standard deviation                                                                                      (8mks)

  1. In the figure below, a and b are the position vectors of points A and B respectively. K is a point on

AB such that the AK:KB = 1:1. The point R divides line OB in the ratio 3:2 and point S divides OK in

the ratio 3:1.

 

B

R

B                                 K

 

0               a                     A

(a) Express in terms of a and b

(i) OK       (iii) RS

(iii) OS      (iv) RA

(b) Hence show that R,S and A are collinear.                                                          (8mks)

 

  1. The figure below is the roof of a building. ABCD is a rectangle and the ridge XY is centrally placed.

 

 

 

 

 

 

 

 

 

 

 

Calculate:

(i) The angle between planes BXC and ABCD.

(ii) The angle between planes ABXY and ABCD.                                                          (8mks)

  1. On the same axis, draw the graph of y = 2cosx and y = sin ½x for 00 £ x £ 1800, taking intervals of 150

                                                                                                                                                                                                          (6mks)

From the graph, find:

(a) The value of x for which 2cosx = sin ½ x                                                                              (1mk)

(b) The range of values of x for which –1.5 £ 2cos x £ 1.5                                              (1mk)

  1. Two towns T and S are 300km apart. Two buses A and B started from T at the same time travelling towards S. Bus B travelled at an average speed of 10km/hr greater than that of A and reached S 1 ¼ hrs earlier.

(a) Find the average speed of A.                                                                                    (6mks)

(b) How far was A from T when B reached S.                                                                (2mks)

  1. P and Q are two ports 200km apart. The bearing of Q from P is 0400. A ship leaves port Q on a bearing of 1500 at a speed of 40km/hr to arrive at port R 7 ½ hrs later. Calculate:

(a) The distance between ports Q and R.                                                                        (2mks)

(b) The distance between ports P and R.                                                                  (3mks)

(c) The bearing of port R from port P.                                                                      (3mks)

  1. A farmer has 15 hectares of land on which he can grow maize and beans only. In a year he grows maize on more land than beans. It costs him shs. 4400 to grow maize per hectare and shs 10,800 to grow beans per hectare. He is prepared to spend at most shs 90,000 per year to grow the crops. He makes a profit of shs 2400 from one hectare of maize and shs 3200 from one hectare of beans. If x hectares are planted with maize and y hectares are planted with beans.

(a) Write down all the inequalities describing this information.                                      (13mks)

(b) Graph the inequalities and find the maximum profit he makes from the crops in a year.          (5mks)

 

 

MATHEMATICS II

PART II

 

  1. Use logarithm tables to Evaluate

3Ö 36.5 x 0.02573

1.938                                                                                                              (3mks)

  1. The cost of 5 shirts and 3 blouses is sh 1750. Martha bought 3 shirts and one blouse for shillings 850. Find the cost of each shirt and each blouse.             (3mks)
  2. If K = ( y-c  )1/2

4p

  1. a) Make y the subject of the formula.       (2mks)
  2. b) Evaluate y, when K = 5, p = 2 and c = 2                                                                   (2mks)
  3. Factorise the equation:

x + 1/x = 10/3                                                                                                             (3mks)

  1. DA is the tangent to the circle centre O and Radius 10cm. If OD = 16cm, Calculate the area of the shaded Region.       (3mks)

 

 

 

 

 

 

 

 

 

 

 

  1. Construct the locus of points P such that the points X and Y are fixed points 6cm apart and

ÐXPY =     600.                                                                                                            (2mks)

  1. In the figure below, ABCD is cyclic quadrilateral and BD is diagonal. EADF is a straight line,

CDF = 680, BDC = 450 and BAE = 980.

 

 

 

 

 

 

 

 

Calculate the size of:                                                                                               (2mks)

  1. a) ÐABD                                       b) ÐCBD
  2. Otieno bought a shirt and paid sh 320 after getting a discount of 10%. The shopkeeper made a profit of 20% on the sale. Find the percentage profit the shopkeeper would have made if no discount was allowed?       (2mks)
  3. Calculate the distance:
  4. i) In nautical miles (nm)
  5. ii) In kilometres (km)

Between the two places along the circle of Latitude:

  1. a) A(300N, 200E) and B(300N, 800E) (Take Radius of Earth = 6371Km).                (2mks)
  2. b) X(500S, 600W) and Y(500S, 200E) (Take Radius of Earth = 6371Km).                  (2mks)
  3. A rectangular tank of base 2.4m by 2.8m and height 3m contains 3,600 litres of water initially. Water flows into the tank at the rate of 0.5m/s. Calculate the time in hours and minutes required to fill the tank. (4mks)
  4. Expand (1 + a)5 up to the term of a power 4. Use your expansion to Estimate (0.8)5 correct to 4 decimal places. (4mks)  
  5. A pipe is made of metal 2cm thick. The external Radius of the pipe is 21cm. What volume of metal is there in a 34m length of pipe (p = 3.14).       (4mks)
  6. If two dice are thrown, find the probability of getting: a sum of an odd number and a sum of scoring more than 7 but less than 10. (4mks)
  7. Find the following indefinite integral ò 8x5 – 3x dx                                                                  (4mks)

x3

  1. The figure below represents a circle of radius 14cm with a sector subtending an angle of 600 at the centre.

 

 

.

 

 

 

 

 

 

 

Find the area of the shaded segment.                                                                                         (3mks)

 

 

 

 

 

 

 

 

  1. Use the data below to find the standard deviation of the marks.

 

Marks (x ) Frequency (f)
5

6

7

8

9

3

8

9

6

4

(4mks)

 

SECTION II (48MKS)

 

  1. The figure below shows a cube of side 5cm.

 

 

 

 

 

 

 

 

 

 

 

 

 

Calculate:

  1. a) Length FC                                                                                                      (1mk)
  2. b) Length HB                                                                                                        (1mk)
  3. c) Angle between GB and the plane ABCD. (1mk)
  4. d) Angle between AG and the Base.       (1mk)
  5. e) Angle between planes AFC and ABCD. (2mks)
  6. f) If X is mid-point of the face ABCD, Find angle AGX. (2mks)
  7. Draw on the same axes the graphs of y = Sin x0 and y = 2Sin (x0 + 100) in the domain 00 £ x0 £ 1800
  8. i) Use the graph to find amplitudes of the functions.
  9. ii) What transformation maps the graph of y = Sin x0 onto the graph of : y = 2Sin (x0 +100).
  10. The table below shows the masses to the nearest gram of 150 eggs produced at a farm in Busiro

country.

Mass(g) 44 45 46 47 48 49 50 51 52 53 54 55
Freq.  1  2  2  1  6  11  9  7  10  12  16  16
Mass(g) 56 57 58 59 60 61 62 63 64 65 70  
Freq.  10  11  9  7   5  3  4  3  3  1  1  

 

Make a frequency Table with class-interval of 5g. Using 52g as a working mean, calculate the mean mass. Also calculate the median mass using ogive curve.

  1. A shopkeeper stores two brands of drinks called soft and bitter drinks, both produced in cans of same

size. He wishes to order from supplies and find that he has room for 1000 cans. He knows that bitter

drinks has higher demand and so proposes to order at least twice as many cans of bitter as soft. He

wishes however to have at least 90cans of soft and not more than 720 cans of bitter. Taking x to be

the number of cans of soft and y to be the number of cans of bitter which he orders. Write down the

four inequalities involving x and y which satisfy these conditions. Construct and indicate clearly by

shading the unwanted regions.

 

 

 

 

  1. Two aeroplanes, A and B leave airport x at the same time. A flies on a bearing 0600 at 750km/h and B flies on bearing of 2100 at 900km/h:
  2. a) Using a suitable scale draw a diagram to show the positions of Aeroplanes after 2hrs.
  3. b) Use your graph to determine:
  4. i) The actual distance between the two aeroplanes.
  5. ii) The bearing of B from A.

iii) The bearing of A from B.

  1. The Probabilities that it will either rain or not in 30days from now are 0.5 and 0.6 respectively. Find the probability that in 30 days time.
  2. a) it will either rain and not.
  3. b) Neither will not take place.
  4. c) One Event will take place.
  5. Calculate the Area of each of the two segments of y = x(x+1)(x-2) cut off by the x axis. (8mks)
  6. Find the co-ordinates of the turning point on the curve of y = x3 – 3x2 and distinguish between them.

 

MATHEMATICS II

PART I

MARKING SCHEME:

 

  1. 0.09122 = (9.12 x 10-2)2 = 0.008317

Ö 3.152 = 1.776

3Ö 1.776 + 0.008317

0.1279 x 25.91

= 3Ö 1.784317              No.             log      

0.1279 x 25.91           1.784         0.2514

0.1279    -1.1069

25.71           1.4101 +

0.5170

-1.7344

x 1/3

10-1 x 8.155(6)                    1-1.9115

Or 0.8155(6)

 

  1. (a – b)(a – b) a – b

(a – b)(a + b)       a + b

 

  1. dy = 2x + 3

dx

y = x2 + 3x + c

-1 = 1 – 3 + c

c = 1     ;     E.g  y = x2 + 3x + 1

 

  1. K2 – 9 = 0

K = ± 3

 

  1. log 128    =  log       64

18                    9

 

log   16        log     8 

6                    3

2 log (8/3)

log (8/3)

= 2

 

  1. Midpoint -8 + 6, 4 + 0         (-1, 2)

2         2

Gradient of LN = 4/-14 = -2/7

Gradient of ^ bisector = 7/2

y – 2  = 7/2

x + 1

y = 7/2X + 11/2

 

  1. 207,500 = 415,000(1 – 15 )n

100

0.5 = ( 85 )n

100

0.5 = 0.85n

log 0.5 = n log 0.85

log 0.5  = n

log 0.85

n = –1.6990   =    -0.3010 = 4.264yrs

-1.9294      -0.0706

 

  1. 2 x      1        =   1  . x 20 = 0.3115 x  20 = 6.230

3.21 x 10-1    3.21

   1     =         1      =  0.5807 = 0.005807

172.2    1.722 x 102           100

6.230 – 0.005807 = 6.224193

= 6. 224(3d.p)

 

X 2 2.5 3 3.5 4 4.5 5
y 4 6.25 9 12.25 16 20.25 25

h = ½

Area= ½ x ½[29+2(6.25+9+12.25+16+20.25+25)]

= ¼ [29 + 127.5]

= ¼  x 156.5  =  39.125  sq. units.

 

  1. Cos q (cos q + ½ ) = 0

cos q = 0        cos q = -0.5

q = 900, 2700    q = 1200, 2400              

\ q = 900, 1200, 2400, 2700

 

  1. MP = 4 MK MK =      -9

9                                   -18

MP = 4 ( -9  ) = ( -4 )

9  -18          8

\ P is ( -1,0 )

 

  1. a = 30 d = 3   l = 300

300 = 30 + 3 (n – 1 )

300 = 30 + 3n – 3

300 – 27 = 3n

273 = 3n

91 = n  

 

 

 

 

  1. y = mx – 1

1 = 3m – 1

m = 2/3 = 0.6667

tan q = 0.6667  ;     q = 33.690    

 

  1. FK x FC = FA2

FC = 25/3 = 8 1/3 cm

CX = 81/3 – 9/2 = 23/6 = 35/6 cm

CX x XK = XA x XN

33/6 x 3/2 = 3 x XN

\ XN = 111/12 cm

 

  1. V3 = k + x

k – x

V3k – V3x = k + x

V3k – k = x + V3x

V3k – k = x( 1 + v3)

V3k – k  = x

1 + V3

 

  1. (i.) x = 2 Þ x £ 2

(ii) y = -2 Þ y > -2

(iii)pts. (0.5,0)

(0,-1.5)

m = -1.5 – 0  = 3

0 – 0.5

Eq. Y = 3x – 1.5    y < 3x – 1.5

 

     

SECTION B

 

X -4 -3 -2 -1 0 1 2 3 4
Y -26 -16 -8 -2 2 4 4 2 -2

(i) Roots are x = -0.5   x = 3.6

 

(ii)  y = -x2 + 3x + 2

0 = -x2 – x + 2 

y = 4x     (-2, -8) (1, 4)

Roots are x = -2, x = 1

 

  1. class x f       d=x-74.5       fd             d2       fd2    

0 – 9        4.5    2         – 70         – 140       4900        9800

10 – 19    14.5     8         – 60         – 480       3600     28,800

20 – 29    24.5     6         – 50         – 300       2500     15,000

30 – 39    34.5     7         – 40         – 280       1600     11,200

40 – 49    44.5     8         – 30         – 240         900       7,200

50 – 59    54.5    10        – 20         – 200         400       4,000

60 – 69    64.5     9         – 10           – 90         100          900

70 – 79    74.5     6            0               0              0              0

80 – 89    84.5     3          10              30         100          300

90 – 99    94.5     1          20            20         400          400   

Sf =       Sfd =                                     Sfd2 =     77,600

60                        -1680

(i) Mean = 74.5 + -1680

60

= 74.5 – 28  =    46.5

(ii) Standard deviation = Ö 77600 – ( –1680 )2

60            60

= Ö 1283.3 – 784

= Ö 499.3 = 22.35

 

  1. a (i.) OK = OA + AK = ½ a + ½ b

(ii) OS = ¾ OK = 3/8 a + 3/8 b

(iii)RS = RO + OS = 3/8 a – 9/40 b

(iv) RA = RO + OA = – 3/5 b + a

 

  1. RA = a – 3/5 b   RS = 3/8 a + 9/40 b

= 3/8( a – 3/5 b)

\ RS = 3/8 RA

The vectors are parallel and they have a common

point R  \ point R, S and A are collinear

 

 

 

 

 

 

 

 

 

 

 

 

 

KB = 3m   NK = 1.5m   XB = 5m

(i)  XK = Ö 52 – 32  = Ö 16 = 4m

let ÐXKN = q

cos q = 1.5  = 0.375

4

q = 67.97(8)0

 

(ii) In DXNK

XN = Ö 42 – 1.52 = Ö 13.75 = 3.708

In D SMR; MR = KB = 3m

SM = XN = 3.708m

Let ÐSRM = a

tan a = 3.708  =1.236

3

a = 51.02(3)0

 

 

 

 

 

 

 

 

 

21.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21.

 

  0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Y =2cosX 2.00 1.93 1.73 1.41 1.00 0.52 0.00 -0.52 -1 -1.41 -1.73 -1.93 -2.00
Y = sin ½ X 0.00 0.13 0.26 0.38 0.50 0.61 0.71 0.79 0.87 0.92 0.97  0.99 1.00

(a) X = 730 ± 10

(b) Between 40.50 and 139.50

 

 

  1. 300km

T                                               S

Let the speed of A be X km/hr

Speed of B = (X + 10) km/hr

Time taken by A = 300 hrs

X

Time taken by B = 300 hrs

X + 10

300300  =  5

x    x + 10    4

300(x + 10) – 300x  = 5

x(x + 10)    4

300x + 300 – 300x = 5

x2 + 10x

x2 + 10x – 2400 = 0.

x = 44.25

X = -54.25 N/A

(b) Distance covered by A in 1 ¼ hrs  = 44.25 x 5/4  = 55.3 km

Distance of A from T is 300 – 55.3 = 244.7 km

 

 

 

 

 

 

 

 

 

  1. (a) Distance = 15 x 40 = 300km

2

(b)

 

 

 

 

 

 

 

 

 

 

 

PR2 = 2002 + 3002 –2x 200 x 300 cos700

= 130,000 – 41040   =   88,960

PR = 298.3 km

 

(c) 298.3  = 300

sin 700    sin a

sin a = 300 sin 700

298.3

= 0.9344

a = 69.10

 

Bearing of R from P is

40 + 69.1 = 109.10

 

  1. (i.) X > y

(ii) 4,400X + 10,800Y £ 90,000

Simplifies to 11X + 27y £ 225

(iii) X + y £ 15

X > 0;  y > 0

Boundaries

x = y pts (6,6) (12,12)

11x + 27y = 225 pts (13,3) (1,8)

X + y = 15 pts (0,15) (8,7)

Objective function

2400 x 3200y

(pt (2,1)

2400X + 3200y = 8000

Search line ® 3X + 4y = 10

Point that give maximum profit is (12,3)

\ maximum profit

= 2400 x 12 + 3200 x 3 = 38,400 shs.

 

 

 

 

 

 

 

 

 

MATHEMATICS  II

PART II

MARKING SCHEME

 

  1. No log.

36.5        1.5623

0.02573   –2.4104 +

-1.9727

1.938         0.2874 –

-1.6853

 

-3  + 2.6853 

3         3

-1 + 0.8951

1.273(4) ¬ 0.1049

= 1.273(4)

 

  1. Let shirt be sh x,

let blouse be sh. y.

5x + 3y =1750 (i.)

3x + y = 850    (ii)

mult (ii) by 3

9x + 3y = 2550 (iii)

Subtract  (iii) – (i.)

– 4x = -800

Subt for x

  1. = 250

Shirt = sh 200  ;   Blouse = sh 250

     

  1. (a) K2 = y – c

4p

y – c = 4pK2

y = 4pK2 + c

(b)    y = 4 x 2 x 25 + 2   ;      y = 202

 

  1. x2 + 1 – 10x = 0

3

3x2 – 10x + 3 = 0

3x (x – 3) – 1(x – 3) = 0

(3x – 1) (x – 3 ) = 0

x = 1/3  or x = 3                                                                                                             

 

  1. Area D OAD pyth theorem AD =12.49cm

½  x 12.49 x 10  =   62.45cm2

Cos q = 10/16 = 0.625

q = 51.30                                     62.5

Sector 57.30  x 3.14 x 100    40.2 –

360                        = 22.3

 

 

 

 

 

 

 

 

  1. ÐXPY = 600

\ÐXC1Y = 1200

              B1             \ÐC1XY = ÐC1YX

= 1800 – 1200  = 300

2

 

 

 

 

Construct 300  angles

at XY to get centres

B1           C1 and C2  mojar arcs drawn

2            on both sides with C1X and C2X

as centres.

 

 

 

 

 

 

 

 

 

 

  1. DAB = 1800 – 980  = 820

ADB = 180 – (68 + 45 ) = 670

                                                                                                                                              ABD = 180 – (67 + 82)

= 310

 

(a) 1800 – (67 + 82)0 = 310

       ÐABD = 310                                                                                 Opp = 1800

(b) (180 – 82)0 = 980                                                                                   82 + 98 = 1800

        1800  – (980 – 450) =

ÐCBD = 370                                                                                  180 – (98 + 45)

= 370

  1. 10 x 320

100     Discount = sh 32

Sold at      sh 288

If no Discount = ( 320 x 20 ) % = 22.7%

288

 

  1. (a) Dist along circle of lat.

Long diff x 60 x cos q nm

100 x 60 x Cos 500

100 x 60 x 0.866

5196nm =      100 x 2pR Cos 500

                                               360

100  x 2 x 3.14 x 6371

360                       =  5780Km

 

 

 

 

 

 

(b) 80 x 60 Cos 50  = 3895 Km

 

  1. Vol =2.8 x 2.4 x 3 = 20.16m3

          1m3 = 1000 L

20.16m3 = 20160 L

20160

    3600       

16560 L to fill

0.5 L – 1 sec

16560 L – ?

 165600

5 x 3600

33120  hr

3600             @ 9.41 hrs     ;     @ 564.6 min.

 

  1. 15 + 5.14a + 10.13.a2 + 10.12a3 + 5.1.a4

a = -0.2

1 + 5(-0.2) + 10(-0.2)2 + 10(-0.2)+ 5 (-0.2)4

1 – 1.0 + 0.4 – 0.08 + 0.008  =   0.3277 (4d.p)                                                                                                                     

 

  1. Area of metal : Material – Cross section.

p(R2 – r2)

3.14 (21 –19)

Vol  6.28cm2 x 3400cm

= 215.52m3        

                                       

  1. Possibility space:

 

.            1  2  3  4  5  6 

1     2  3  4  5  6  7

2     3  4  5  6  7  8

3     4  5  6  7  8  9

4     5  6  7  8  9  10

5     6  7  8  9 10 11

6     7 8  9 10 11 12

 

P(odd) = 3/6 = ½

P(Sum > 7 but < 10)   =   9 /36

\ P(odd) and P(sum > 7 but < 10 )

= ½  x 9/36 = 9/72     =  1/8

 

  1. ò( 8x5/x3 – 3x/x3) d4

ò( 8x2 – 3x-2) d4                                                                

16x3/3 + 6x-3/-3  + C                                                 

16x3/3 – 2/x+ C

 

  1. Area of DAOB

½  x 14 x 14 x 0.866  =  84.866cm2

Area of sector  =  60  x3.14 x 14 x14 = 10.257

360

Shaded Area

84.666  –  10.257 = 74.409cm2                            

 

 

 

 

 

Marks F Fx fx2
5 3 15 75
6 8 48 288
7 9 63 441
8 6 48 384
9 4 36 324

 

åx =    åf=30   åfx=210   1512

S.d =  Ö åfx2  –  ( åfx )2

                             åf            åf

= Ö 1512   –  (210)

30            30

=  Ö 50.4 – 49

=   Ö 1.4  = 1,183                                                       

 

       SECTION II                                               .

 

  1. (a) FC = Ö 52 + 7.072 = Ö 50 = 7.071

(b) HB = Ö 52 + 7.072    = Ö 75 = 8.660

(c) q = Tan-1 5/5 = Tan-1   = 450                                                         

(d)  b = Tan-1 5/7.071 = Tan-1 0.7071  =  35.30                                                        

(e)  y = Tan-1 5/3.535   = Tan-1    = 54.70                                                        

(f) ÐAGX = 19.40

 

 

  1. y = Sin x
      x0 00 300 600 900 1200 1500 1800
sin x0 0 0.50 0.66 1.00 0.866 0.500 0

 

y = 2 Sin (x0 + 100)

      X0 00 300 600 900 1200 1500 700
2 Sin(x +100) 0.3472 1.286 1.8794 1.286 0.3472 -0.3472 -1.8794

Amplitudes for y = Sin x0 is 1

For

y = Sin(x+100) is 2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c.f X F
61 53 12
16   54
93 55 16
103 56 10
11   57
123 58 9
130 59 7
135 60 5
138 61 3
142 62 4
145 63 3
148 64 3
149 65 1
150 70 1

 

Mean =  x    + 52  + -4

150

52 –  0.02

=     51.08

Median  =     51.4g.

 

class interval 59

Class interval mid point Freg. c.f
44-48 46 12 12
49-53 51 49 61
54-58 56 64 125
59-63 69 22 147
64-68 66 3 130
69-73 71 1 150

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. X + Y £ 1000

X £ 2Y

Y < 720

X > 90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21.(a)    1cm = 200Km/h

A = 200 x 7.5  =  1500 Km

B =  200 x 9  = 1800Km.

 

(b) (i.) 15.8cm x 200                     (ii) Bearing 2240

= 3160 Km.                              (iii) Bearing 0490

 

  1. (a) P(R) x P(R)1                         (b) P(R)¢ x P(R)                        (c) P(R) x P(R’)

= 0.5 x 0.6                                     0.5 x 0.4                                          P(R)’ x P(R)

= 0.3                                     =  0.2                                            0.5 x 0.6 = 0.3

0.5 x 0.4 = 0. 2= 0.5

  1. y = x(x + 1)(x – 2)

= x3 – x2 – 2x

A1 = ò(x3 – x2 –2x) d4                                

-1[¼ x4 –  1/3 x2]-1

= 0 – ( ¼ + 1/3 – 1)    =  5/12

A2 = 2ò(x3 – x2 –2x) d4

0ò ¼ x4 – 1/3 x3 – x2)-20                     

= ( ¼ .16 – 1/3 .8 – 8 )

= 4-0 – 8/3 – 4  =   – 8/3

              A1 = 5/12= A2 = 2 2/3         

                            

  1. y = x3 – 3x2

dy  = 3x2 – 6x

At stationary

Points      dy = 0

dx

i.e   3x2 – 6x = 0

3x(x – 2) = 0

x = 0 or 2

Distinguish

dy = 3x2 – 6x

dx

d2y  =  6x – 6

dx2

    (i)    x = 0  dy2 = 6x – 6 = -6                 (ii)       x = 2

dx2                                                 d2y  =  6

-6 < 0 – maximum.                               dx2

\ (0,0) Max Pt.                                                6 > 0 hence

Minimum Pt.

x = 2,  y = 8 – 12 = -4

(2, -4)     minimum point.

 

MATHEMATICS II

PART I

 

SECTION 1 (52 Marks)

  1. Without using tables evaluate:

 

Ö7.5625 x 3Ö3.375

15                                                                                                        (5 mks)

 

  1. Make k the subject of the formula.

y = 1  Ök + y                                                                            

T2      k                                                                                                       (3 mks)

 

  1. If A = (x, 2) and xB     =     x     and if AB = (8), find the possible values of x.

-2                                                                                 (3 mks)

  1. Simplify completely. (3 mks)

rx4 – r

2xr – 2r

 

  1. Solve the equation. (3 mks)

Log 3 (8-x)  –  log 3 (1+x) = 1

 

  1. Under an enlargement scale factor -1, A(4,3) maps onto A1 (4,-5). Find the co-ordinates of the centre of enlargement. (3 mks)

 

  1. Find the equation of the line perpendicular to the line 4x-y = -5 and passing through the point (-3,-2).       (2 mks)
  2. Find the standard deviation of the data below:

3,5,2,1,2,4,6,5                                                                                                   (4 mks)

 

  1. What is the sum of all multiples of 7 between 200 and 300? (4 mks)

 

  1. Solve the equation.

½ tan x  =  sin x for -1800  £  x  £  3600.                                                            (3 mks).

 

  1. Expand (1-2x)4. Hence evaluate (0.82)4 correct to 5d.p. (4 mks)

 

  1. The line y = mx – 3 passes through point (5,2). Find the angle that the line makes with the x-axis. (2 mrks)
  2. A two digit number is such that 3 times the units digit exceed the tens digit by 14. If the digits are reversed, the value of the number increases by 36. Find the number (4 mks)

 

 

 

 

 

 

  1. In the figure below, O is the centre of the circle, OA = 7 cm and minor arc AB is 11 cm long. Taking P = 22/7, find the area shaded. (3 mks)

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. A box contains 36 balls, all identical except for colour. 15 of the balls are black, 15 are brown and the rest are white. Three balls are drawn from the box at random, one at a time, without replacement. Find the probability that the balls picked are white, black and brown in that order. (2 mks)

 

  1. Find the inequalities that describe the unshaded region R below. (4 mks)

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SECTION  2 (48 Marks)

 

  1. Draw the graph of y = x2 + x – 6 for -4 £ x £

Use your graph to solve the equations.

(i)  x2 + x – 6 = 0                       (ii) x2 + 2x – 8 = 0                                             (8 mks)

 

  1. The diagram below represents a bucket that has been placed upside down. The radius of the top surface is 15cm and that of the bottom is 40cm. The vertical height of the bucket is 50cm.

 

 

 

 

 

 

 

 

 

 

 

 

 

Determine:-

  • The volume of the bucket.
  • The curved surface area of the bucket. (leave your answers in terms of p)

 

  1. Draw, on the same axes, the graphs of y = cos q and y = 5 sin q for – 1800 £ q £ 1800
  • From your graph, determine the amplitude of each wave.
  • For what value(s) of q is cosq – 5 sin q = 0 (8 mks)

 

  1. A point P lies on a coast which runs from West to East. A ship sails from P on a bearing of 0320. When it reaches Q, 7km from P, a distress signal is observed coming from another ship at R. Given that R is N.E of P and on a bearing of 0660 from Q, calculate:
  • Ð
  • The distance QR, between the two ships.
  • The shortest distance from R to the shore. (8 mks)

 

  1. A bag contains x red balls and y yellow balls. Four times the number of red balls is equal to nine times the number of yellow balls and twice the total number of balls exceeds the number of yellow balls by 44.
  • How many balls of each colour are three in the bag?
  • If two balls are drawn out of the bag at random one at a time with replacement what is the probability that the two balls are red? (8 mks)

 

  1. A Kenyan businessman goes on a trip to West Germany through Italy and back to Kenya. In Kenya he is allowed to take Ksh. 67,000 for sales promotion abroad. He converts the Kenya currency into US dollars. While in Italy, he converts 2/5 of his dollars into Italian lire, which he spends in Italy. While in West Germany, he converts 5/8 of the remaining dollars into Deutsche marks which he uses up before coming to Kenya. Using the conversion rates 1 US dollar = 1.8 Deutsche marks = 16.75

Ksh = 1340 Italian lire. Answer the following questions:

  • How many US dollars did he take out of Kenya?
  • How many Italian lire did he spend in Italy?
  • How much money, in Deutsche marks did he spend in West Germany?
  • How much money in Ksh. did he have on his return to Kenya? (8 mks)

 

  1. PQRS is a parallelogram in which PQ = r and PS = h. Point A is the midpoint of QR and B is a point on PS such that PS : PB = 4:3. PA and QB intersect at M.

 

 

 

 

 

 

 

 

 

 

Given that PM = kPA and BM = tBQ where k and t are scalars, express PM in two different ways and hence find the values of k and t.

Express PM in terms of r and h only.                                                                                   (8 mks)

 

 

 

 

 

 

 

 

  1. Two variables T and X are connected by the equation T = abx where a and b are constants. The values of T and X are given in the table below:

 

T 6.56 17.7 47.8 129 349 941 2540 6860
X 2 3 4 5 6 7 8 9

 

 

Draw a suitable straight line graph and use it to estimate the values of a and b.              (8 mks)

 

 

MATHEMATICS III

PART II

 

Section I:   (52 Marks)

 

  1. Use mathematical tables to evaluate:

 

8.67                                                                                                                        (3 mks)

Ö 0.786 x (21.72)3

 

  1. Simplify completely. (3 mks)

4      –    1

x2 – 4        x-2

 

  1. An Indian on landing at Wilson Airport changes Re 6000 into Kenya shillings when the exchange rate is Re = Ksh. 1.25. He spent Ksh. 5000 when in Kenya and converted the remaining amount to Rupees at the same rate as before. Find out how much the Indian is left with in Rupees. (3mks)

 

  1. The last of three consecutive odd numbers is (2x+3). If their sum is 105, find the value of x. (4 mks)

 

  1. a S  b is defined by:           a S b  =  (a + b)

ab

If B S   (2  S   3)  =  4  S   1, Find B.                                                                                   (3 mks)

  1. Find the value of M. (3 mks)

 

 

M

 

850

 

1600

 

 

  1. (a) Expand (1+2x)6 upto the term containing x3 .                                                                (2 mks)

 

(b)  By putting x = 0.01, find the approximate value of (1.02)6 correct to 4 S.F.                    (2 mks)

 

 

  1. Show that x is the inverse of : Y =    3          -3      1           X =       2      1                       (3 mks)

-5        2                     5      3

 

 

 

 

 

 

  1. The probabilities of three candidates K, M and N passing an examination is 2/3, ¾ and 4/5 Find the probability that :

(a)  All pass:                                                                                                           (1 mk)

(b)  At least one fails:                                                                                              (2 mks)

 

  1. In the figure, PR is tangent to the circle centre O. If ÐBQR=300, ÐQBC=270,and ÐOBA=370, find ÐBAC and Ð

 

C                        A

 

 

 

 

B                                                                                            P                                                                                 R

  1. A frustrum of height 10cm is cut off from a cone of height 30cm. If the volume of the cone before cutting is 270cm3 , find the volume of the frustrum. (3 mks)

 

  1. Evaluate 0 (2 mks)

( 3x2 –  1 ) dx

4 x 2

1

  1. If one litre of water has a mass of 1000g, calculate the mass of water that can be held in a rectangular tank measuring 2m by 3m by 1.5m. (give your answer in tonnes). (2 mks)
  2. Write down the three inequalities which define the shaded region. (3 mks)

 

 

 

(3,2)

 

 

 

 

 

 

(2,1)                                   (4,1)

 

 

 

 

  1. The depth of sea in metres was recorded on monthly basis as follows:

 

Month March April May June July
Depth (m) 5.1 4.9 4.7 4.5 4.0

Calculate the three monthly moving averages.                                                               (3 mks)

  1. A number of women decided to raise sh. 6300 towards a rural project for bee keeping. Each woman had to contribute the same amount. Before the contribution, seven of them withdrew from the project. This meant the remaining had to pay more. If n stands for original number of women, show that the increase in contribution per woman was: 44100                   (3 mks)

n(n-7)

 

 

 

 

 

SECTION II:   (48 Marks)

 

  1. Find the distance between points A(500 S, 250 E) and B(500 S, 1400 E) in:

(i)   Km                  (ii)   nm                                                                                                (8 mks)

(take radius of earth to be 6400km, P =  3.14)

 

  1. The distance S in metres, covered by a moving particle after time t in seconds, is given by :

S  =  2t3 + 4t3– 8t + 3.

Find:

(a)  The velocity at :            (i)  t  =  2                      (ii)  t  =  3

  • The instant at which the particle is at rest. (8 mks)

 

  1. A car starts from rest and its velocity is measured every second for six seconds. (see table below).
Time (t) 0 1 2 3 4 5 6
Velocity v(ms -1) 0 12 24 35 41 45 47

 

Use trapezium rule to calculate the distance travelled between t = 1 and t = 6.                (8 mks)

 

  1. Using a pair of compass and ruler only, construct triangle ABC such that AB=9cm, BC=14cm and ÐBAC = 1200 . Draw a circle such that AB, BC and AC are tangents. What is the radius of this circle?                                                                                                                                (8 mks)
  2. The marks scored by 100 students in mathematics test is given in the table below:
Marks 10-19 20-29 30-39 40-49 50-59 60-69 70-79
No. of students 8 15 15 20 15 14 13

 

(a)  Estimate the median mark.                                                                               (2 mks)

(b) Using 44.5 as the assumed mean, calculate:-

(i)         The mean mark:                                                                                   (2 mks)

(ii)        The variance:                                                                                        (2 mks)

(iii)       The standard deviation:                                                                         (2 mks)

 

  1. (a) On the same axes, draw the graphs of : y  =  sin x  ;  y  =  cos x

y  =  cosx  +  sin X for 00 Ð X Ð 3600 .

(b)  Use your graph to deduce

(i) The amplitude

(ii) The period of the wave y = cos x + sin x.

(c) Use your graph to solve:

Cos x  = – sin x for 00 Ð X Ð 3600 .

 

  1. Given a circle of radius 3 units as shown in the diagram below with its centre at O(-1, 6). If BE and DE are tangents to the circle where E (8,2). Given further that Ð DAB = 800.

B

 

 

A                                                                              E

C

 

 

D

(a)  Write down the equation of the circle in the form ax2 + bx + cy2 + dy + e = 0 where a, b, c,             d, e are constants.                                                                                       (2 mks)

(b)  Calculate the length DE.                                                                                   (2 mks)

(c)  Calculate the value of angle BED.                                                                     (2 mks)

(d)  Calculate the value of angle DCB.                                                                     (2 mks)

 

  1. A building contractor has to move 150 tonnes of cement to a site 30km away. He has at his disposal 5 lorries. Two of the lorries have a carrying capacity of 12 tonnes each while each of the remaining can carry 7 tonnes. The cost of operating a 7 tonne lorry is sh. 15 per km and that of operating a 12 tonne lorry is sh. 25 per km. The number of trips by the bigger lorries should be more than twice that made by smaller lorries.                                                                                     (8 mks)

 

(a)  Represent all the information above as inequalities.

  • How should the contractor deploy his fleet in order to minimise the cost of moving the cement?                                                                                                                                   (8 mks)

 

 

MATHEMATICS III

PART I

MARKING SCHEME

 

 

 

 

 

 

SOLUTION MRK AWARDING  
1. Ö7.5625 = 2.75

 

3Ö3.375 = 3Ö3375 X 3Ö10-3

 

3 Ö33 x 53 x 10-1 = 3 x 5 x 10-1 = 1.5

 

= 2.75 x 1.5  =  2.75  =  0.275

1.5 x 10          10

 

1

 

1

 

1

1

1

 

 

Method for Ö7.5625

Square root

 

Method for 3Ö

3Ö

Answer

 
    5    
2. T2y  =  Ö k+y

K

T4y2k =  k+y

T4y2k – k  =  y

K(T4y2-1) =  y

K  =  y

T4y2 – 1

 

 

1

 

 

1

 

1

 

 

Removal of square root

 

Rearrangement of terms

Answer

 
    3    
3. (x 2)         x      =  (8)

-2

 

x2 – 4  =  8

 

x  =  +Ö12 = + 2Ö3 = + 3.464

 

1

 

 

1

 

1

 

 

Matrix equation

 

 

Quadratic equation

Answers in any form

 
    3    
4. r(x2 – 1)

2r(x – 1)

 

r(x2 – 1)(x2 + 1)

2r (x – 1)

 

r(x – 1)(x + 1)( x2 + 1)

2r (x – 1)

 

=   (x + 1)( x2  + 1)

2

 

 

 

 

1

 

 

 

1

 

 

1

 

 

 

 

Complete factorisation of numerator

 

Factorisation of denominator

 

Answer

 
    3    
5.       1  =  log3 3

8 – x    =   3

1+x

 

-4x  =  -5

 

x = 5

4

1

 

 

 

1

 

1

 

 

 

Logarithic expression.

 

 

Equation

 

Answer

 

 

 
    3    
6. Let the centre be (a,b)

 

4-9        =  -1      4-a

-5-b                  3-b

 

4-a  =  -4+9           -5-b  =  -3+b

a  =  4                     b  =  -1

centre is (4,-1)

 

 

 

1

 

 

1

 

1

 

 

 

 

 

Equation

 

 

Linear equations

 

Centre

 

 
    3    
7. Y  =  4x + 5

Gradient = 4

Gradient of ^ line – ¼

y + 2  =  – 1

x + 3        4

4y + x  =  -11

 

 

1

1

 

 

Gradient of ^ line.

Equation.

 

 
    2    

8.

X  = 28  =  3.5

8

 

 

standard deviation = Ö 22 = Ö2.75  =  1.658

8

 

 

1

 

 

1

1

 

1

 

Mean

 

 

d values

d2 values

 

Answer

 
    4

 

   
9. a = 203    d = 7   L = 294

 

294  =  203 + 7(n-1)

n  =  14

 

S 14  =  14 (203 +  294)

2

 

=  7 x 497

=  3479

 

1

 

1

 

 

1

 

 

 

1

 

For both a and b

Equation

 

 

For n

 

 

 

Sum

 

 
    4    
10. Sin x  =  2 sin x

Cos x

 

Sin x  =  2 cosx

Sin x

 

2 cos x  =  1

cos x  =  0.5

 

x  =  600, 3000, -600

 

 

 

1

 

 

 

1

 

1

 

 

 

 

Simplification

 

 

 

Equation

 

All 3 values

 
    3    
11. (1 +-2x)4  =  1-8x + 24x2 – 32x3 + 16x4

 

(0.82)4  =  (1 + -2 x 0.09)4

x     =  0.09

(0.82)4  = 1 – 0.72 + 0.1944 – 0.023328 + 0.00119376

= 0.35226576

@  0.35227 (5 d..p)

1

 

 

1

1

 

1

 

Expansion

 

 

Value of x

All terms

 

 

Rounded

 
    4    
12.   2  =  5m – 3

m =  1

tan q  =  1                    q  =  450

 

1

1

 

 

Value of m.

Angle

 
    2    
13.  Let the number be xy

3y  =  x + 14

10y + x  =  10x + y + 36  =  9y – 9x  Þ  36

3y – x  =  14

9y – 9x  =  36

y  =  5

x  =  1

the number is 15.

 

1

1

 

1

 

 

1

 

 

1st equation

2nd equation

 

method of solving

 

Answer

 

 
   

 

S

4    
14. Let ÐAOB  =  q

  q  x  2  x   22  x  7  =  11

360              7

q  =  900

 

Area shaded  =   90 x 22 x 7 x 7 – 1 x 7 x 7

360    7                2

77 49

2     2

= 28  =  14cm2

2

 

 

 

1

 

1

 

 

1

 

 

 

 

Value of q

 

Substitution

 

 

Answer

 
    3    
15. P(WBb)  =  6 x 15 x 15

36    35   34

 

=   15

476

1

 

 

1

 

Method

 

 

Answer

 
    2    
16. Equation                                  inequality

L1    y =  x                                   y  £  x

L2    y = -2                                   y  ³ -2

L3    2y + 5x = 21                        2y + 5x < 21

1

1

1

1

 

1 mark for each inequality.

Method for obtaining L3

 

 
 

 

 

 

 

 

 

 

 

 

 

 

(i)  roots are x = -3

x = 2

(ii)  y = x2 + x-6

0 = x2 + 2x-8

y = -x + 2

roots are x = -4

x =  2

4 2

 

 

 

 

 

 

 

1

 

1

 

 

1

 

1

 

1

 

For all correct points.

1 for atleast five correct points.

 

 

 

Correct plotting.

 

Scale

 

 

Smoothness of

curve

 

Both roots

 

 

Linear equation

 

 

Both roots

 

   

 

  8  
         
18.    h     =  15

h+50     40

 

h   = 30cm

H  =  80cm

 

(a)  Volume  =  1/3 p x 40 x 40 x 80 – 1/3  p x 15 x 15 x 30

 

128000 p  –  6750 p

3               3
=   121,250p cm3

3

 

(b)   L2  =  802 + 402                      L    =  152 + 302

= 6400 + 1600                      = 225 + 900

=  8000                                   = 1125

L    =  89.44 cm                    L    =  33.54 cm

Curved surface area of bucket = p x 40 x 89.44

p x15x33.54

= 3577.6p – 503.1p

=  3074.5cm2

1

 

 

1

 

 

1

 

 

 

 

1

 

1

 

1

 

1

 

1

 

Expression

 

 

Value of H

 

 

Substitution

 

 

 

 

Volume

 

L

 

L

 

 

Substitution

 

Area

 

 
    8    
 

 

19.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     
         
 

20.

 

 

 

(i)  ÐRPQ  =  130

        ÐPQR  =  320+900+240 =  1460

ÐPRQ  =  1800 – (1460 + 130)

=  210

 

(ii)    P      =        7

sin130         sin 210

P    =   7 sin 130

Sin 210

=  4.394km

 

 

 

 

 

 

 

 

 

 

 

P                                                               T

 

(iii)    Let PR  =  q

 

q       =       7

sin 1460      sin 210

 

q     =  7 sin 1460

sin 21

q       =  10.92 km

 

sin 450  =    RT

10.92

 

RT  =  10.92 sin 450

 

= 7.72 km (2 d..p)

 

 

 

 

1

 

 

 

 

 

 

1

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

1

 

 

 

 

 

1

 

 

1

 

1

 

 

 

Fair sketch

 

 

 

 

 

 

ÐPRQ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equation

 

Method

 

 

 

Equation

 

 

 

 

 

 

Distance PR

 

 

Equation

 

RT

 

 

 

 

 
  8    
21. (a)  4x  =  9y

2(x+y)  =  y+44  Þ  2x + y  =  44

 

4x – 9y = 0

4x + 2y = 88

11y = 88

y   =  8

 

x  =  18

(b)  P(RR)  =   18  x  18   =  81

26      26      169

 

1

 

1

 

2

 

1

1

1

1

 

 

 

Equation

 

Equation

 

Method of solving

Value y

Value x

Method

Answer

 
    8    
22. (a)  67,000 Ksh  =  67,000 US dollars

16.75

= 4,000 dollars

 

(b)  2 x 4,000  =   1600 US dollars

5

1600 US dollars  =  1600 x 1340

=  2,144,000 Italian lire

(c)  Remainder  =  2400 US dollars

5  x  2400   =  1500 US dollars

8

1500 US dollars = 1500 x 1.8

= 2700 Deutche marks

(d)  Remainder  =  900 US Dollars

900 US Dollars = 900 x 16.75 Ksh.

=  15,075 Ksh.

 

1

 

1

 

1

 

1

1

 

 

1

1

1

 

 

Method

 

Answer

 

Method

 

Answer

 

For 1500

 

 

Answer

 

Method

Ksh.

 
    8    
23. PM  =  kPA

=  k(r + 1h)

2

=  kr + 1kh

2

PM  =  PB +  BM

3h + t BQ

4

=   3h + t(-3h + r)

4          4

 

3h – 3t h + tr

4     4

3 –   3t    h + tr

4     4

 

t = k           33t  =  1k

4   4       2

33t = 1 t

4    4     2

5t  =   3

4       4

t  =  3 + 4

4    5

= 3

5

\   k = 3

5

\   PM  =  3r  +  3h

5       10

 

 

 

1

 

1

 

 

1

 

 

1

 

1

 

 

1

 

1

1

 

 

 

 

 

PM

 

PM

 

 

PM simplified

 

 

 

 

 

 

 

Both equations

 

method

 

 

 

 

Value of k

 

Value k

PM

 

 
    8    
         
 

 

 

24.

Y

LogT

 

 

 

Log T  =  log a + x log b

Log T  Þ  0.82, 1.25, 1.68, 2.11, 2.54, 2.97, 3.40, 3.84

 

y – intercept = log a = 0

a = 1

gradient  =  3.84 – 0.82  =   3.02

9 – 2                  7

= 0.4315

 

log b = 0.4315   =  0.4315

b = antilog 0.4315

b  =  2.7

 

1
1

 

 

 

 

 

 

 

1

2

 

1

 

1

 

 

 

 

1

8

Plotting
Labeling of axis

 

 

 

 

Linear

All correct logs

 

Value of a

Method of gradient

 

Value of  b

 

MATHEMATICS III

PART II

MARKING SCHEME

 

  1. SOLUTION MARKS    AWARDING
1.    No                                      log

 

8.69                                   0.9390

0.786                                 1.8954

21.72                                 1.3369

1.2323

1.7067 – 2

 

21.7067

2           2

– 1  +  0.8533

0.7134 x 10 -1     =  0.07134

 

 

 

 

 

M1

 

 

M1

 

 

 

A1

 

 

ü reading to 4 s.f

 

 

 

 

 

 

Rearranging

    3  
2.  

 4                   –         1

(x-2)(x+2)                  (x-2)

 

 – x+2

(x-2(x+2)

– (x-2)

(x-2(x+2)

 

-1

x+2

 

 

 

M1

 

 

M1

 

 

A1

 

 

 
    3  
3.  

Re6000  =  Ksh. 75000

Spent 5000 Rem 2500

Rem    2500

1.25

Re 2000

M1

 

 

M1

 

A1

 

 
    3  
4. 2x – 1  ,  2z + 1  ,  2x + 3

6x +  3  =  105

6x  =  102

x  =  17

M1

M1

A1

A1

 

Allow M1 for us of different variable.
    4  
5.  

4 * 1  =  5

4

2 * 3  =  5

6

A * 5  =  5

6      4

A + 5  =  5  x  5A

6      4       6

A +  5  =  25 A

6       24

A   =  20

 

 

M1

 

 

 

 

M1

 

 

A1

3

 
6.  

 

 

 

 

180 – M + 20 + 95  =  180

295  –  M  =  180

– M  =  – 115

M  =  115

 

 

 

B1

 

 

B1

 

 

A1

 

 
    3  
 

7.

 

1 + 2x + 60x2 + 160x3 +

1 + 0.2 + 0.006 + 0.00016

=  1.20616

=  1.206

 

M1

M1

M1

A1

4

 

Only upto term in x3.

Correct substitution

 

Only 4 s.f.

 

8.  

3   -1      2    1    =    I

-5   2       5    3

 

6   -5             3    -3

-10 +10         -5 + 6

 

1      0

0       1

 

 

M1

 

M1

 

 

A1

 

 

Matrix multiplication gives :

 

I       1   0

0   1

  3  
9. (a)   2  x  3  x  4      =  2

3      4      5           5

(b)

2  x  3  x 1     +     2  x  1  x  4     +     1  x  3  x  4
3      4     5            3      2      5             3      4      5

 

1  +  4  +  1

10     15     5

 

=     17

10

M1

 

 

M1

 

 

 

 

A1

 

 

 
    3  
10. ÐQCB  =  300

180 – (27 + 30)  =  1230

\     BAC  =  570.

 

 

 

 

OBA  =  370

OAB  =  370

 

 

AOB  =  1060

\ ACB  =  530

 

 

 

M1

 

 

 

 

 

M1

 

 

A1

 

 

 

 

 

 

 

 

 

Isosceles triangle.

 

Angle at centre is twice angle at circumference.

    3  
11. V  =  1  x  3.14  x  r 2  x 10  =  270

L.S.F.      20   =  2

30       3

V.S.F  =    2   3        =     8

3                   27

Vol. of cone  =  8  x  270

27               =      80cm3

\ Vol. Of frusturm  = (270 – 80)  =  190cm3

 

 

 

M1

 

M1

 

 

A1

 

 
    2  
12.

 

 

 

 

 

 

 

 

3x 3  –  x  -1          2

3       -1         1

 

x 3  +  1     2

x     1

 

8  +  1     –   ( 1  –  1)

2

8 1  –  2     =         6  1

2                           2

 

 

 

 

 

 

M1

 

 

 

A1

2

 
13. (2 x 3 x 1.5)  volume

9 m3

1L  º  1000 cm3

1000 L  =  1 m3

9000 L  =  9 m3

1000 L  =  1 tonne

9000 L  =  9 tonnes.

 

 

M1

 

 

 

A1

 

 
    2  
14.      y   ³ 1            (i)

y   <  x – 1     (ii)

y   <  5 – x     (iii)

 

B1

B1

 

 
    3  
15. M1  =  5.1  +  4.9  +  4.7  =  4.9

3

M2  =  4.9 + 4.7 + 4.5  =  4.7

3

M3  =  4.7 + 4.5 + 4.0  =  4.4

3

M1

M1

M1

 

 

 
    3  
16. Original contribution per woman  =  6300

N

Contribution when 7 withdraw  =  6300

(n-7)

Increase   –  Diff.

6300   –   6300

n-7          n

6300n  –  6300(n-7)

n(n-7)

6300n – 6300 + 44100

n(n-7)

44100

n(n-7)

 

 

 

M1

 

 

M1

 

1

3

 
SECTION II (48 Marks)

 

17. (i)

1150

 

A                                B

 

Centre of circles of latitude 500 S.  R Cos 500

AB  =  115  x  2p R Cos 50o

115  x  40192  x  0.6428

360

=  8252.98  km

 

(ii)   Arc AB 60 x 115  Cos 50 nm

60 x 115 x 0.6428 nm

4435 nm

 

 

 

 

 

M1

M1

 

 

M1

 

A1

 

M1

M1

M1

A1

 

 

 

 

 

 

 

No.                     log

60                      1.7782

1+5                    2.0607

0.6428               1.8080

4435nm             3.6469

    8  
18. (a)  V  =  ds  =  6t2 + 8t – 8

dt

(i)  t  =  2

V  =  6×4 + 8×2 – 8

= 32 ms-1

(ii)  t  =  3

V =  6×9 + 8×3 – 8

= 70ms-1

 

(b)  Particle is at rest when V = 0

6t2 + 8t – 8 = 0

2(3t – 2) (t+2) = 0

t  =  2                   t  =  -2

3

particle is at rest at t = 2 seconds

3

   

 

 

 

 

 

 

 

 

 

 

 

Do not accept t = -2. Must be stated.

    8  
19. Area under velocity – time.

graph  gives distance.

 

A  = { h ½  (y1 + y6 ) + y2 + y3 + y4 + y5 )}

 

= 1 { ½ ( 12+47) + 24 + 35 + 41 + 45)}

=  29.5 + 14.5

=  174.5m

 

 

B1

B1

M1

M1

B1

B1

A1

 

Trapezium rule only accepted.

Formula.

 

Substitution into formular.

    8  
20.                  Drawing actual

Scale 1cm  =  2cm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Radius      1cm

=  2cm

 

M1

 

M1

 

M1

 

M1

 

M1

M1

 

M1

M1

 

 

Bisect ÐA

 

Bisect Ð B

 

Intersection at centre of inscribed circle.

Draw circle.

 

Measure radius.

Arcs must be clearly shown.

  8  
 

 

 

21.

 

 

 

 

mean = 44.5 +  130

100

=  44.5  +  1.3

=  45.8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)  Variance  S (x – A) 2  =  2800

Sf               100

= 28

S.D.  =  Ö 28  =  5.292

 

 

 

 

M1

 

 

 

 

 

A1

 

M1

 

A1

M1

A1

 

 
    8  
 

 

 

 

 

22.

y = sin x

x    0        60        120        180     240      30      360

sin x 0    0.866     0.866      0     -0.866   -0.866    0

y = cos x

x     q        60        120        180     240    300  360

cos x 1     0.5       -0.5       -1.0     -0.5     0.5   1.0

y = cosx + sinx

x            q        60       120        180     240      30     360

cosx + sinx 1  1.366   0.366       -1   -1.366  -0.366 1.0

(c)      Cos x = – sin x

x  =  450 , 2250

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(i)  amplitude   =  1.366

(ii)  Period  =  3000

 

 

 

(a)  (x+1) 2  +  (y-6)2  =  32

x2 + 2x + 1 + y2 – 12y + 36  =  9

x2 + 2x + y2 – 12y + 28  =  0

 

(b)  cos 10  =  OD             DE  =  3

DE                   0.9848

DE  =  3.046

 

(c)  Twice ÐOED

100 x 2  =  200

 

(d)  DAB  =  800

\ DCB  =  1000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M1

 

A1

 

M1

A1

 

 

M1

A1

 

M1

A1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Formular

(x-a)2 + (y-b)2 = r2

 

 

 

 

 

 

 

 

 

Cyclic quad.

 

 

    8  
24. Let number of trips by 12 tonne lorry be x.

Let number of trips by 7 tonne lorry be y.

 

(a)   x > 0  ;  y > 0

24x + 21y  £  150

 

12 x 25 x X + 15 x 7 x y £ 1200

300x + 105y  £  1200

x > 2y

 

(b)  Ref. Graph paper.

Minimising:

3 – 12 tonne lorry and 2 – 7 tonne lorries should be deployed.

 

 

 

B1

 

 

 

B1

B1

 

 

 

 

 

 

 

MATHEMATICS IV

PART I

 

SECTION 1 (52MKS)

 

  1. Evaluate using logarithms 3Ö7.673 – 15.612

12.3                                                              (4mks)

 

  1. Solve x   –  3x  –  7    =  x – 2                                                                                   (3mks)

3            5             5

 

  1. In the given figure CD is parallel to BAC, calculate the values of x and y. (3mks)

 

 

C                                       D

 

 

 

 

 

 

B                                                A

 

  1. The surface area and volume of a sphere are given by the formulars S = 4pr2 and V= 4/3 pr3.

Express V in terms of S only.                                                                                (3mks)

 

  1. A line perpendicular to y = 3-4x passes through (5,2) and intercepts y axis at (0,k)

Find the value of K.                                                                                              (3mks)

 

  1. An alloy is made up of metals P,Q,R, mixed in the ratio 4:1: 5: A blacksmith wants to make 800g of the

alloy. He can only get metal P from a metallic ore which contains 20% of it. How many Kgs of the ore

does he need.                                                                                                           (3mks)

 

 

  1. The co-ordinate of point A  is (2,8) vector AB =   5    and vector BC  =  4   Find the

-2                                 3

co-ordinate of point C.                                                                                             3mks)

 

  1. Two buildings are on a flat horizontal ground. The angle of elevation from the top of the shorter building to the top of the taller is 200 and the angle of depression from the top of the top of the shorter building to the bottom of the taller is 300. If the taller building is 80m, how far apart are they

(4mks)

  1. The given figure is a quadrant of a piece of paper from a circle of radius 50cm. It is folded along AB

and AC to form a cone . Calculate the height of the cone formed.

(4mks)

 

 

 

 

5Ocm

 

 

50cm

 

 

  1. Express 3.023 as a fraction                                                                                      (2mks)
  2. Point A (1,9), Point B(3,5) and C (7,-3). Prove vectorically that A,B and C are collinear.       (4mks)
  3. A salesman gets a commission of 4% on sales of upto shs 200,000 and an additional 2% on

sales above this. If in January he got shs 12,200 as commission, what were his total sales    (4mks)

  1. Water flows through a cylindrical pipe of diameter 3.5cm at the rate of 2m/s. How long to the nearest minute does it take to fill a spherical tank of radius 1.4m to the nearest minute? (4mks)
  2. Rationalize the denominator in Ö3

Ö 7 – 2

Leaving your answer in the form Öa + Öb

C

Where a ,b, and c are integers                                                                              (3mks)

  1. For positive values of x, write the integral solutions of 3£ x2  £  35                 (4mks)
  2. 8 girls working 5 hours a day take 12 days to drain a pool. How long will 6 girls working 8 hours a day take to drain the pool?( Rate of work is equal) (2mks)

 

SECTION II  (48 mks)

 

  1. In the given circle centre O , A,E,F, is target to the circle at E. Angle FED = 300  <DEC = 200 and  <BC0  = 150

 

 

 

 

A                                                                       F

 

 

 

 

Calculate   (i) <CBE                                                                                              (3mks)

(ii)  <BEA                                                                                            (2mks)

(iii) <EAB                                                                                            (3mks)

 

  1. The sum of the 2nd and third terms of a G.P is 9/4 If the first term is  3,

(a) Write down the first 4 terms of the sequence .                                              (5mks)

(b) Find the sum of the first 5 terms using positive values of the common ratio (r)

(3mks)

  1. E and F are quantities related by a law of the form E = KFn Where k and n are

constants. In an experiment , the following values of E and F were obtained .

 

E 2 4 6 8
F 16.1 127.8 431.9 1024

 

Use graphical method to determine the value of k and n (Graph paper provided)      (8mks)

 

  1. In the domain –2 £ x £ 4 draw the graph of y = 3x2 + 1 –2x .Use  your graph to solve the equation.  6x2 4x + 4 = 0 (graph paper provided)                                                                 (8mks)
  2. A solid sphere of radius 18cm is to be made from a melted copper wire of radius 0.4mm . Calculate the length of wire in metres required to make the sphere.                                       (5mks)

(b) If the density of the wire is 5g/cm3. Calculate the mass of the sphere in kg.        (3mks)

 

  1. A right cone with slant  height of 15cm and base radius 9cm has a smaller cone of height 6cm chopped off to form a frustum. Find the volume of the frustum formed                    (8mks)

 

 

 

 

 

 

 

 

9cm

 

  1. PQRS are vertices of a rectangle centre. Given that P(5,0) and Q and R lie on the line x+5 = 2y, determine

(a) The co-ordinates of Q,R,S,                                                                                                   (6mks)

(b) Find the equation of the diagonal SQ                                                                                     (2mks)

  1. A tap A takes 3 hours to fill a tank. Tap B takes 5 hours to fill the same tank. A drain tap C takes 4 hours to drain the tank. The three taps were turned on when the tank was empty for 1½ hours. Tap A is then closed. Find how long it takes to drain the tank.

(8mks)

 

 

 

 

 

 

 

 

MATHEMATICS IV

PART II

 

SECTION   I  (52MKS)

 

  1. Without using mathematical tables, evaluate                                                                    (3mks)

 

Ö 0.0784 x 0.27                                              (leave your answer in standard form)

0.1875

 

  1. A father is three times as old as his son. In ten years time , the son will be half as old as the father . How

old are they now?                                                                                                                                      (3mks)

 

  1. A,B,C,D, is a parallelogram diagram. ADE is an equilateral triangle. AB and CD are 3cm apart.

AB = 5cm. Calculate the perimeter of the trapezium ABCE                                               (3mks)

 

E                            D                                    C

A                                   B

  1. Given that a = -2, b = 3 and c = -1, Find the value of   a3 – b – 2c2                                    (2mks)

2b2 – 3a2c

 

  1. The exchange rate in January 2000 was US $ 1 = Ksh 75.60. and UK £1 = Ksh 115.80.    A tourist  came to Kenya with US $ 5000 and out of it spent ksh.189,000. He changed   the balance in UK £ . How many pounds did he receive?                                                                                                   (4mks)

 

  1. ABC is a cross – section of a metal bar of uniform cross section 3m long. AB = 8cm and  AC = 5cm.

Angle BAC = 600 . Calculate the total surface area of the bar in M2.                                     (4mks)

 

  1. The bearing of a school chapel C, from administration block A, is 2500 and 200m  apart.

School flag F is 150m away from C and on a bearing of 0200. Calculate the distance and

bearing of A from F.                                                                                                               (5mks)

  1. A box has 9 black balls and some white balls identical except in colour. The probability of picking a white ball is 2/3

(i) Find the number of red balls                                                                                       (2mks)

(ii) If  2  balls are chosen at random without replacement, find the probability that they are of different colour.                                                                                                                          (2mks)

  1. Under an enlargement of linear scale factor 7, the area of a circle becomes 441.p

Determine the radius of the original circle.                                                              (3mks)

  1. A circle has radius 14cm to the nearest cm . Determine the limits of its area.                     ( 3mks)
  2. Expand (1 + 2x)5 up to the term with x3. Hence evaluate 2.045 to the nearest 3 s.f. (4mks)
  3. The nth term of a  G.P is given by  5 x 2 n-2

(i) Write  down the first 3 terms of the G.P                                                                (1mk)

(ii) Calculate the sum of the first 5 terms                                                                            (2mks)

  1. 3 bells ring at intervals of 12min, 18min and 30min respectively. If they rang together at 11.55am, when will they ring together again.                                                         (3mks)
  2. On a map scale 1:20,000 a rectangular piece of land measures 5cm by 8cm. Calculate its actual area in hectares.                                                                                                                                      (3mks)
  3. It costs Maina shs. 13 to buy 3 pencils and 2 rubbers; while Mutiso spent shs.9 to buy one pencil and 2 rubbers. Calculate the cost of a pencil and one rubber                      (3mks)

 

  1. Three angles of a pentagon are 1100, 1000 and 1300. The other two are 2x and 3x respectively. Find their values .                                                              (2mks)

 

SECTION II (48MKS)

 

  1. Members of a youth club decided to contribute shs 180,000 to start a company. Two members withdrew their membership and each of the remaining member had to pay shs. 24,000 more to meet the same expense. How many members remained? (8mks)
  2. A box contains 5 blue and 8 white balls all similar . 3 balls are picked at once. What is the probability that

(a)  The three are white                                                                                         (2mks)

(b)  At least two are blue                                                                                                    (3mks)

(c) Two are white and one is blue                                                                                         (3mks)

 

  1. A rectangular tennis court is 10.5m long and 6m wide. Square tiles of 30cm are fitted on the floor.

(a) Calculate the number of tiles needed.                                                                             (2mks)

(b) Tiles needed for 15 such rooms are packed in cartons containing 20 tiles. How many cartons are

there in total?                                                                                                                 (2mks)

(c)  Each carton costs shs. 800. He spends shs. 100 to transport  each 5 cartons. How  much would one

sell each carton to make 20% profit ?                                                                             (4mks)

  1. The following was Kenya`s income tax table in 1988.

Income in K£ P.a             Rate (Ksh) £

1          –   2100                  2

2101    –   4200                  3

4201     –  6303                  5

6301     –  8400                  7

 

(a) Maina earns £ 1800 P.a. How much tax does he pay?                                         (2mks)

(b) Okoth is housed by his employer and therefore 15% is added to salary to make  taxable income. He

pays nominal rent of Sh.100 p.m His total tax relief is Shs.450. If he earns K£3600 P.a, how much

tax does he pay?                                                                                              (6mks)

  1. In the given figure, OA = a , OB =b,  OP: PA =3:2,  OQ:QB = 3:2

Q

B
R

O                                                                            A

(a) Write in terms of a and b vector PQ                                                                                       (2mks)

(b) Given that AR = hAB where h is a scalar, write OR in terms h, a. and b                    (2mks)

(c) PR  =  K PQ Where K is a scalar, write OR in terms  of k, a and b                           (1mk)

(d) Calculate the value of k and h                                                                                               (3mks)

 

  1. A transformation P = and maps A(1,3) B(4,1) and C(3,3) onto A1B1C1. Find the

 

 

co-ordinates of A1B1C1 and plot ABC and A1B1C1 on the given grid.

Transformation Q maps A1B1Conto A11 (-6,2) B11(-2,3) and C11(-6,6). Find the matrix Q and plot

A11B11C11on the same grid. Describe Q fully.                                                           (8mks)

 

  1. By use of a ruler and pair of compasses only, construct triangle ABC in which AB = 6cm,

BC = 3.5cm and AC = 4.5cm. Escribe circle  centre 0 on BC to touch AB and

AC produced at P and Q respectively. Calculate the area of the circle.                       (8mks)

  1. The following were marks scored by 40 students in an examination

330       334      354     348     337     349     343    335    344    355

392       341      358     375     353     369     353    355    352    362

340       384      316     386     361     323     362    350    390    334

338       355      326     379     349     328     347    321    354    367

 

(i) Make a frequency table with intervals of 10 with the lowest class starting at 31          (2mks)

(ii) State the modal and median class                                                                         (2mks)

(iii) Calculate the mean mark using an assumed mean of 355.5                                        (4mks)

 

 

MATHEMATICS IV

PART 1

MARKING SCHEME

 

1.  

Ö –  7.939

12.3

 

=      No             log

7.939                       0.8998

12.3              1.0899

T.8099   1/3 = 3 + 2.8099                                T.9363                   3

 

=  -0.8635

B1

 

 

 

 

B

 

M1

 

A1

4

 

 Subtraction

 

 

 

 

Logs

 

Divide by 3

 

Ans

2. 5x – 3 (3x –7 )    =  3(x – 2 )

5x – 9x + 21    =   3x – 6

-7x             = -27

x              =  36/7

 

M1

M1

 

A1

3

Multiplication

Removal ( )

 

Ans

3. 3x +5y + x =  180

9x   =  180

x    =   20

y   =    60

M1

A1

B1

3

Eqn

X

B

 

 

4.  

.                               r   =       3v      1/3

4P

 

.                              r   =        S       ½

4P

 

\ 3V      1/3              =            ½

4P                                 4P

 

3V                         =       S       3/2

4P                                 4P

 

V             =       4P      S     3/2

3            4P

 

 

 

B1

 

 

 

 

 

 

 

M1

 

 

 

A1

3

 

 

 

Value r

 

 

 

 

 

 

 

Equation

 

 

 

Expression

5.

 

 

 

 

6.

Grad  line          = ¼

y – 2        = ¼

x – 5

y            =  ¼ x + ¾

k             =      ¾

P in Alloy         = 4/10  x 800

= 320g

100 x 320

20

=  3.2 kg

 

M 1

 

A1

A 1

3

 

B1

 

M1

 

A 1

 

Equation

 

Equation

K

 

 

P in alloy

 

Expression

 

Ans

 

 

 

 

7.

 

 

 

 

B (a,b) ,            C (x ,y)

.a – 2          =    5

.b – 8               -2

.a  = 8     b = 6      B(8, 6 )

x – 8          =   3

y – 6               4

x = 11,  y = 10 c(11,10)

 

 

 

 

 

B1

 

M1

 

 

A1

3

 

 

 

 

B conduct

 

Formular

 

 

C

8.  

 

 

 

 

 

80 – x

 

 

 

 

 

.h = x tan 70

h = (80 – x ) tan 60

\   x tan 70 = 80 tan 60-x tan 60

2.7475x + 1.732x = 138.6

4.4796 x       =   138.6

.h     =    138.6 x tan 60

4.4796

 

= 53.59

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1

M1

 

 

 

M1

 

A1

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Expression for  h both

Equation

 

 

 

Expression for h

 

Ans

9.                 2pr    =  90  x 2p x 50

360

r    =  12.5

h     =  Ö2500 –  156.25

=   Ö2343.75

=   48.41 cm

 

M1

P

A1

M1

 

A1

4

Equation

 

.r

expression for h

 

ans

 

 

10.

 

100 n      =   302.323

     n      =      3.023   

99n       =   299.3

n      =    2993

990

=    323/990

 

M1

 

 

A1

4

 

 

Equation

 

 

Ans

 

11. AB        =     3-1

5-9

=     2

-4

BC         =     4

-8

AB         = ½   BC

\ AB // BC

But B is common

\ A,B,C are collinear.

 

 

 

 

B1

 

 

 

 

 

B1

 

 

B1

3

 

 

A B &  BC

 

 

 

 

 

Both

 

 

Both

 

12.       4% of 200,000  = 8000/=

balance                   = 4200/=

6% of  x                 = 4200/=

x                 = 4200 x 100

6

=  70,000

sales                 =  sh. 270,000

B1

 

 

M1

A1

B1

4

 

 

Both

 

 

Expression

Extra sales

Ans

 

 

 

 

 

 

13 .

 

 

 

 

 

Time          =   22/7 x 3.5/2x 3.5/2 x 200   hrs

22/7x 140x140x 140x 3600

 

8960

3600

= 2 hrs 29min

 

 

 

 

 

M1

M1

 

M1

 

A1

4

 

 

 

 

 

 

Vol tank

Vol tank

 

Div x 3600

 

Tank

 

 

14.

 

 

 

 

 

 

 

    Ö3                      =     Ö3           Ö7 + Ö2

Ö7Ö2                         Ö2Ö2         Ö7+ Ö2

 

= Ö3 Ö7 + Ö2

5

 

= Ö21 + Ö6

5

M1

 

M1

 

A1

3

Multi

 

Expression

 

 

 

Ans

15.           3 £ x 2                   x2 £ 35

±1.732 £x                 x £ ± 5.916

1.732 £ x           £ 5.916

integral x : 2, 3, 4, 5

 

B1

B1

B1

B1

4

Lower limit

Upper limit

Range

Integral values

 

16.  No of days   =  8/6 x 5/8  x 12

=   10 days

M1

A1

2

Expression

days

17. (i)  ÐCED      =  ÐECD   = 30

Ð CDE     =  180 – 60

=  120

Ð CBE    =  180-120

=60

(ii) Ð AEC  = 90+30

= 120

Ð EAB  = 180-(120+45)

= 150

(iii) ÐBEO  = 90-45

= 45

B1

B1

B1

B1

 

B1

 

B1

B1

 

B1

8

 

 

 

 

 

 

 

ÐA EB = 450

 

ÐBEO

18.   .ar + ar2    =  9/4

3r + 3r2   =  9/4

12r2  + 12r – 9 = 0

4r2  + 3r – 3   = 0

4r2 + 6r – 2r –3 = 0

(2r – 1) (2r + 3)  = 0

r  = ½  or r   = -11/2

 

Ss      = 3(1- (1/2 )5)

1 – ½

 

= 3 (1-12/3 2)

½

= 6 ( 31/32)

= 6 31/32

 

B1

B1

 

B1

 

M1

A1

 

M1

 

 

 

M1

 

 

A1

8

 

 
19.

LOG  E.    0.3010   0.6021     0.7782     0.9031

LOG  F      1.2068   2.1065     2.6354     3.0103

 

Log E =n log F  + Log K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.n  = gradient    = 2        2.4 – 1.4   =  12  =  3

Log k.             =  0.3       0.7 – 0.3       4

.k              = 1.995

¾ 2

‹         E     =  2F 3

B1

B1

 

 

S1

 

 

P1

 

 

L1

 

 

M1

A1

 

B1

8

 

Log E

Log F

 

 

Scale

 

 

Plotting

 

 

Line

 

 

Gradient

 

 

K

 

 

 

20  

.x       -2     -1     0    1     2    3      4

.y      17      6      1    6     9  22     41

 

.y  =  3x 2  – 2x + 1    –

0       =  3x 2 – 3x – 2

y   =  x     +  3

 

 

 

 

 

 

 

B2

 

B1

 

B1

 

S1

P1

C1

 

L1

 

B1

 

8

 

 

 

All values

 

At least  5

 

Line

 

Scale

Plotting

Smooth curve

 

Line drawn

 

Value of r

 

 

21. .h          = ¾ p x 18 x 18x 18

p x 0.04 x 0.04

= 24 x 18x 18x 18

0.04   x 0.04 x 100

 

=  48,600m

 

density  = 4/3 x 22/7 x 18 x 18x 18x 15 kg

1000

= 122.2kg

M1

M1

M1

M1

 

A1

 

M1

M1

A1

8

N of wire

¸ to length in cm

¸ for length

conversing to metres

 

length

 

expression for density

conversion to kg

ans

 

 

22.  

H = Ö152 – 92

= Ö144

= 12

 

X/6  = 9/12

X    = 4.5

Volume   = 1/3 x 22/7x (81 x 12 –20.25×6 )

 

= 22/21  (972 – 121 -5)

 

=   891  cm3

 

 

M1

 

 

A1

 

M1

A1

M1

M1

M1

 

A1

8

Method

 

 

 

 

Method

Radius

Small vd

Large vol

Subtraction of vol.

 

Ans

23. R(-a , b) , Q (c,d), S(x , y) ,P (5,0)

PR is  diagonal

(a)    Mid point  PR  (0,0)

a + 5    = 0

2

.a         =   -5

b- 0     =   0

2
b = 0

R (-5,0)

Grad  PQ   = -2

Grad RS   = -2

.d – 0   =  -2

c –5

.d – 0      = ½

c+5

.d+ 2c     = 10

2d – c     = 5×2         –

4d – 2c   = 10

5d         = 20

d         = 4

c         = 3

Q (3, 4)

x + 3  ,    y+4   =  (0,0)

2           2

x  =  -3 , y = -4   \ s(-3 -4)

 

(b) y – 4   =   8

x – 3        6

3y  = 8x – 12

 

 

 

 

 

 

 

B1

 

 

 

M1

 

 

 

 

M1

 

 

 

 

A1

 

M1

A1

 

M1

 

A1

8

 

 

 

 

 

 

 

Ans .

 

 

 

Expression both correct

 

 

 

Equation

 

 

 

 

Ans

 

 

 

 

Expression

 

Equation

 

       

MATHEMATICS IV

PART II

MARKING SCHEME

 

 

1.                784 X 27        =

187500

Ö 784 x 9           =    4 x 7x 3

62500                      250

=       42

125

=       0.336

 

 

 

M1

 

M1

 

 

A1

 

 

 

Factors for

Fraction or equivalent

 

C.A.O

    3  
2.      Father 3x ,  r son  = x

2(x +10)        = 3x + 10

2x +20       =  3x + 10

x        = 10

father            = 30

M1

 

 

A1

B1

 

Expression

 

 

 

 

 

 

    3  
3. 3   = sin   60

AE

AE  = 3

Sin 60

= 3.464

perimeter  = 5×2 + 3.464 x 3

= 10+10.393

= 20.39

M1

 

 

 

A1

 

 

B1

Side of a triangle

 

 

 

 

 

 

Perimeter

    3  
4.    .a3 – b-2c2  =  (-2)3 – 3 –2(-1)2

2b2 – 3a2c      2(3)2 –3(-2)2(-1)

= -8 –3-2

18 + 12

= -13

30

M1

 

 

M1

 

A1

Substitution

 

 

Signs

 

C.A.O

    3  
5.        Ksh  189,000          =   $ 189,000

75.6

= $ 2500

balance                    = $ 2500

=  Kshs. 189,000

Kshs. 189,000          =             189,000

115.8

Uk    ₤1632

M1

 

A1

 

M1

A1

 

A1

4

 

Conversion

 

 

 

Conversion

 

6. Area of 2 triangles  =   2 (½ x 8x 5 sin 60)

=   40 sin 60

=   40x 0.8660

= 34.64 cm2

Area of rectangle    = 300 x 8 + 300 x 5 +300 x BC

BC              = Ö64 +25 – 2 x 40cos 60

= Ö89 – 80 x 0.5

= Ö89 – 40

= Ö49

= 7

Total   S.A.              = 300 (8+5+7) + 34.64 cm2

= 6000 + 34.64

= 6034.64 cm2

M1

 

 

 

 

M1

 

 

 

 

M1

 

A1

Areas of D

 

 

 

 

B.C. expression

 

 

 

 

Area

 

    4  
7.    AF2    = 32+42+-2+12x cos 50

= 25 – 24 x 0.6428

= 25-15.43

= 9.57

AF      =  3.094 x 50

AF      =  154.7m

Sin Q  =  200 sin 50o

154.7

= 0.9904

Q   = 82.040

Bearing = 117.96

M1

 

 

 

 

A1

M1

 

 

A1

B1

 

 

 

 

 

 

 

 

 

 

 

Bearing

    5  
8. (i)  No. of white  = w

w       = 2

w+9         3

3w       = 2w + 18

w      =  18

(ii)  p(different colour )  = p(WB N  BW)

= 2   x   9   + 918

3      25     27    25

= 12/25

M1

 

 

 

 

A1

M1

 

A1

 
    4  
9. A.sf                =  1

49

smaller area       = 1 x 441 p

49

=  9p

pr2          = 9p

r2         =  9

r           = 3

 

 

 

M1

 

M1

 

 

A1

 

 
    3  
10.  Largest area         = 22 x (14.5)2

7

=  660.8 cm 2

smallest area          =  22/7 x (13.5)2

= 572.8

572.8    £ A  £ 660.81

M1

 

 

M1

 

A1

 
    3  
11. (1 +2 x)5  =  1 + 5 (2x) + 10 (2x)2 + 10 (2x)3

=  1 + 10x   + 40x2  + 80x3

2.0455    =   1+2 (0.52)5

= 1+10 (0.52)+ 40(0.52)2+80(0.52)3

= 1+5.2 + 10.82 + 11.25

= 28.27

M1

A1

 

M1

 

A1

 
    4  
12.          Tn           =  5x 2n –2

(i)               T1 , T2, T3 = 2.5, 5, 10

(ii)                      S5      =  2.5(25-1)

2-1

= 2.5 (31)

= 77.5

 

B1

M1

 

 

A1

 

All terms

 

    3  
13. 12         = 22 x 3

18         = 2 x 32

30         = 2x3x5

Lcm         = 22 x 32x 5 = 180 min

=  3hrs

time they ring together =11.55 +3 = 2.55 p.m

M1

 

 

 

A1

B1

 
    3  
14.  Map area      = 40cm 2

Actual area   =  200x200x40m2

= 200x200x40ha

100×100

= 320ha

M1

M1

 

 

A1

Area in m2

Area in ha

 

 

CAO

    3  
15.     3p + 2r    = 13

p + 2r    =   9  –

2p           =   4

p     = sh 2

r     = 3.50

M1

 

 

A1

B1

 
    3  
16. 110 + 100+130+2x +3x = 540

5x  = 200

x  = 400

2x , 3x     = 80 and 1200 res

M1

 

A A1

2

 
17. Contribution / person    = 180,000

X

New contribution    = 180,000

x – 2

180,000   – 180,000  = 24,000

x –2               x

180,000x – 180,000x +360,000 = 24,000(x-2)x

24,000x2  –  48,000x – 360,000 =0

x2  – 2x – 15 = 0

x2 – 5x + 3x – 15 = 0

x (x – 5)+ 3 (x – 5) = 0

(x + 3 )(x – 5)  = 0

x     = -3

or     = 5

remaining members            = 5-2

= 3

B1

 

B1

 

M1

M1

 

 

A1

M1

 

 

A1

 

B1

 

‘C’

 

 

 

eqn

mult

 

 

eqn

factor

 

 

both ans

 

remaining members

    8  
18. (a) P (3 white)         =  8   x  7  x   28

13      12     11    143

(b) P(at least 2 blue)=p(WBBorBBWorBWB)orBBB

= 8  x   5  x   4   +  5  x   4  x  8

13     12     11      13     12    11

+ 5  x   8  x   4 +   8 x   7 x   6

13     12     11    13     12    11

= 204

429

= 68

143

(c) p(2 white and one blue )= p(WWB or WBW or BWW)

= 8  x  7  x  5  +  8  x  57  +  587

13     12    11   13     12   11   13    12   11

= 3 x 8 x 7 x 5

13 x 12 x 11

 

=  70

143

M1

A1

 

 

M1

 

M1

 

 

 

A1

 

 

 

M1

M1

 

 

 

A1

 

 
    8  
19. (a) recourt area    =  10.5 x 6  m2

title  area       =    0.3 x 0.3 m2

No of tiles     =    10.5 x 6

0.3 x 0.3

=  700

(b) No of cartons = 700 x 15

20

= 52.5

 

(c) Cost of 525 cartons  =   525 x 100 + 800 x 525

+ transport                        5

=  10,500+420,000

=   430,500

sale price                  =  120 x 4.30,500

100

=  sh    516,600

s.p of a carton            =  516,600

525

= sh. 984

 

 

M1

A1

 

M1

 

A1

 

 

 

B1

 

M1

 

 

M1

 

A1

 

 

 
    8  
20. (a) Maina`s tax dues       = 1800 x 10

100

=        180

(b) Taxable income        = 3600 x 115 – n rent

100

= 36 x 115 – 100 x 12

20

= 4140 – 60

=         4080

Tax dues                         = 10    x 2100  + 15  x 1980

100                 100

= 210 + 297

=        507

Tax  relief                      =        270-

Tax  paid                        =        237

M1

 

A1

 

 

M1

 

 

A1

M1

M1

 

A1

 

B1

 

 

 

 

 

 

 

 

 

 

1st slab

2nd slab

    8  
21.  (a)            PQ                 =  –3/5 a   +  3/1b

=  31/23/5 a

(b)             OR                 =   h a + h b

=   a – ha + hb

=  (1-h) a + h b

(c)              OR                =  3/5 a   + k (31/2 b – 3/5a)

=  (3/53/5k)a +3k b

(d)                      1 – h     =  3/53/5k    (i)

3k    =  h                   (ii)

Sub (i)              1 – 3k    =  3/53/5k

5- 15k    =  3-3k

12k    =  2

k    =   1/6

h     =  ½

 

 

B1

 

M1

A1

M1

A1

 

 

M1

 

 

A1

B1

 
     

8

 
 

22.

 

P(ABC) =     0  – 1      1  4  3      =  -3  -1  -3

1    0      3  1  3            1   4   3

A1 (-3,1)B1 (-1,4)C1(-3,3)

Q(A1B1C1) =  a  b    -3 –1 -3    =        -6 –2 –6

c d       1   4  3                2   8   6

 

=> -3a + b =  -6                -3c + d = 2

-a + 4b   =  -2 x 3         -c + 4d = 8 x 3

– 3a  + 12b = -6              – 3c + 12d = 24

11b  = 0                     -11d  = -22

b = 0                           d = 2

a = 2                           d = 2

c  = 0

Q =    2     0

0       2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M1

A1

 

 

M1

 

 

M1

 

 

 

 

 

A1

 

 

 

B1

 

 

 

 

B1

 

 

 

B1

 

 

A1 B1 C1

 

 

 

 

 

 

 

 

 

 

 

L Q

 

 

 

A1 B1 C1 drawn

 

 

 

 

All BII CII

Ploted

 

 

 

 

Destruction

 

 

 

    8  
23.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24.

R     = 2.2CM ± 0.1

Area = 22 x  2.2 x 2-2

7

= 15.21cm2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ef =40                        efd = -80

(ii) model class    = 351- 360

modern class  = 341 – 350

(iii) mean             = 355.5  – 80

40

=  355.5 – 2

=  353.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1

 

B1

 

B1

 

B1

 

B1

 

B1

 

M1

 

 

 

1

1

 

 

8

 

B1

B1

 

M1

 

 

A1

 

B1

 

B1

B1

B1

 

 
    A1  
    8  

 

 

 

MATHEMATICS V

PART I

 

SECTION 1 (52 MARKS)

 

 

 

  1. Use logarithms to evaluate 6 Cos 40   0.25
    63.4                                                                                                                                                                                                       (4mks)
  2. Solve for x in the equation (x + 3) 2 – 5 (x + 3) = 0 (2mks)
  3. In the triangle ABC, AB = C cm. AC = bcm. ÐBAD = 30o and ÐACD = 25o. Express BC in terms of b and c.                                                                                                     (3mks)
  4. Find the equation of the normal to the curve y = 5 + 3x – x3 when x = 2 in the form
    ay + bx = c                                                                                                             (4mks)
  5. Quantity P is partly constant and partly varies inversely as the square of q. q= 10 and p = 5 ½  when q =20. Write down the law relating p and q hence find p when qs is 5.            (4mks)
  6. Solve the simultaneous equation below in the domain 0  £ x £  360 and O£  y £ 360
    2 Sin x + Cos y = 3
    3 Sin x – 2 Cos y = 1                                                                (4mks)
  7. Express as single factor 2     –     x + 2         +       1
    x + 2    x2 + 3x + 2         x + 1                                       (3mks)
  8. By use of binomial theorem, expand (2 – ½ x )5 up to the third term, hence evaluate (1.96)5
    correct to 4 sf.                                                                                                        (4mks)
  9. Points A(1,4) and B (3,0) form the diameter of a circle. Determine the equation of the circle and write it in the form ay2 + bx2 + cy + dy = p where a, b, c, d and p are constants.                                                                                                                              (4mks)
  10. The third term of a GP is 2 and the sixth term is 16. Find the sum of the first 5 terms of the GP. (4mks)
  11. Make T the subject of the formulae 1       –  3m   +  2
    T2         R         N                        (3mks)
  12. Vectors, a =   2     b =   2   and   c –   6
    2              0                   4
  13. By expressing a in terms of b and c show that the three vectors are linearly dependent.                                                                                                                              (3mks)
    A cylindrical tank of base radius 2.1 m and height is a quarter full. Water starts flowing into this tank at 8.30 a.m at the rate of 0.5 litres per second. When will the tank fill up? (3mks)
  14. A piece of wood of volume 90cm3 weighs 54g. Calculate the mass in kilograms of 1.2 m3 of the wood.      (2mks)
  15. The value of a plot is now Sh 200,000. It has been appreciating at 10% p.a. Find its value 4 years ago.
    (3mks)
  16. 12 men working 8 hours a day take 10 days to pack 25 cartons. For how many hours should 8 men be

working in a day to pack 20 cartons in 18 days?                                                     (2mks)

SECTION II (48MARKS)

  1. The tax slab given below was applicable in Kenya in 1990.
    Income in p.a.                           rate in sh
    1  – 1980                                  2
    1981 – 3960                              3
    3961 – 5940                              5
    5941 – 7920                              7
    Maina earns Sh. 8100 per month and a house allowance of Sh. 2400. He is entitled to a tax relief of Sh.

800 p.m. He pays service charge of Sh 150 and contributes Sh 730 to welfare. Calculate Mwangis net

salary per month.                                                                                                    (8mks)

  1. OAB is a triangle with OA = a , OB = b. R is a point of AB. 2AR = RB. P is on OB such that
    3OP = 2PB. OR and AP intersect at Y, OY = m OR and AY = nAP. Where m and n are scalars.    Express in terms of a and b.
    (i) OR                                                                                                                    (1mk)
    (ii)AP                                                                                                                    (1mk)

    (b) Find the ratio in which  Y divides AP                                                                (6mks)

  2. The table below gives related values of x and y for the equation y = axn where a and n are constants
X 0.5 1 2 3   10
Y 2 8 32   200 800

By plotting a suitable straight line graph on the graph provided, determine the values of a and n.

20.       Chalk box x has 2 red and 3 blue chalk pieces. Box Y has same number of red and blue

pieces. A teacher picks 2 pieces from each box. What is the probability that
(a)        They are of  the same colour.                                                                            (4mks)
(b)        At least one is blue                                                                                           (2mks)
(c)        At most 2 are red                                                                                              (2mks)

21.  Point P(50oN, 10oW) are on the earth’s surface. A plane flies from P due east on a parallel of

latitude for 6 hours at 300 knots to port Q.
(a) Determine the position of Q to the nearest degree.                                                    (3mks)
(b)  If the time at Q when the plane lands is 11.20am what time is it in P.                      (2mks)
(c) The plane leaves Q at the same speed and flies due north for 9 hours along a longitude to

airport R. Determine the position of R.                                                                       (3mks)
22.       Using a ruler a pair of compasses only, construct :
(a)        Triangle ABC in which AB = 6cm, AC = 4cm and Ð ABC = 37.5o.                                (3mks)
(b)        Construct a circle which passes through C and has line AB as tangent to the circle at A.             (3mks)
(c)        One side of AB opposite to C, construct the locus of point P such that  ÐAPB = 90o.              (2mks)
23.       A particle moves in a straight line and its distance is given by S = 10t2 – t3 + 8t where S is

distance in metres at time t in seconds.
Calculate:
(i) Maximum velocity of the motion.                                                                             (4mks)
(ii) The acceleration when t = 3 sec.                                                                              (2mks)
(iii) The time when acceleration is zero.                                                                                   (2mks)

 

 

 

  1. A rectangle ABCD has vertices A(1,1) B(3,1), C(3,2) and D(1,2). Under transformation

matrix M =   2  2   ABCD is mapped onto A1B1C1D1

1   3
under transformation M =   -1  0    A1B1C1D1 is mapped onto  A11B11C11D11. Draw on the given grid
0 –2

(a)       ABCD, A1B1C1D1 and A11B11C11D11                                                                  (4mks)
(b)        If area of ABCD is 8 square units, find area of A11B11C11D11.                              (3mks)
(c)        What single transformation matrix maps A11B11C11D11 onto A1B1C1D1               (1mk)

MATHEMATICS V

PART II

 

SECTION 1 (52 Marks)

 

  1. Evaluate without using mathematical tables (2.744 x 15 5/8)1/3                              (3mks)
  2. If 4 £ x £ 10 and 6 £ y £5, calculate the difference between highest and least
    (i) xy                                                                                                                    (2mks)
    (ii)  y/x                                                                                                                     (2mks)
  3. A 0.21 m pendulum bob swings in such a way that it is 4cm higher at the top of the swing than at the bottom. Find the length of the arc it forms.       (4mks)
  4. Matrix 1        2x   has on inverse, determine x                                                     (3mks)
    x +3      x2
  5. The school globe has radius of 28cm. An insect crawls along a latitude towards the east from A(50o, 155oE) to a point B 8cm away. Determine the position of B to the nearest degree.                                                                                                                                                 (4mks)
  6. The diagonals of triangle ABCD intersect at M. AM = BM and CM = DM. Prove that triangles ABM and CDM are Similar.       (3mks)
  7. Given that tan x = 5/12, find the value of 1  –   sinx
                                                                         Sin x + 2Cos x,   for 0 £ x £ 90           (3mks)

 

  1. Estimate by MID ORDINATE rule the area bounded by the curve y = x2 + 2, the x axis and the lines x = O and x = 5 taking intervals of 1 unit in the x. (3mks)
  2. MTX is tangent to the circle at T. AT is parallel to BC. Ð MTC = 55o and Ð XTA = 62o. Calculate Ð (3mks)
  3. Clothing index for the years 1994 to 1998 is given below.
Year 1994 1995 1996 1997 1998
Index 125 150 175 185 200

Calculate clothing index using 1995 as base year.                                                          (4mks)

  1. A2 digit number is such that the tens digit exceeds the unit by two . If the digits are reversed, the number formed is smaller than the original by 18. Find the original number. (4mks)
  2. Without using logarithm tables, evaluate log5 (2x-1) –2 + log5 4 = log5 20             (3mks)
  3. Mumia’s sugar costs Sh 52 per kg while imported sugar costs Sh. 40 per kg. In what ratio should I mix the sugar, so that a kilogram sold at Sh. 49.50 gives a profit of 10%. (4mks)
  4. The interior angles of a regular polygon are each 172o. Find the number of sides y lie polygon.                                                                                                                            (2mks)
  5. Evaluate 2x   =       2    +        3
    341       9.222                                                                           (2mks)
  6. A water current of 20 knots is flowing towards 060o. A ship captain from port A intends to go to port

B   at a final speed of 40 knots. If to achieve his own aim, he has to steer his ship at a course of 350o.

Find the bearing of A from B.                                                                                (3mks)

SECTION II  (48 MARKS)

  1. 3 taps, A, B and C can each fill a tank in 50 hrs, 25 hours and 20 hours respectively. The three taps are turned on at 7.30 a.m when the tank is empty for 6 hrs then C is turned off. Tap A is turned off after four hours and 10 minutes, later. When will tap B fill the tank? (8mks)
  2. In the domain –5 £ x £ 4, draw the graph of y = x2 + x – 8. On the same axis, draw the graph of y + 2x = -2. Write down the values of x where the two graphs intersect. Write down an equation in x whose roots are the points of intersection of the above graphs. Use your graph to solve. 2x2 + 3x – 6 = 0.                                                                                            (8mks)
  3. The average weight of school girls was tabulated as below:
Weight in Kg 30 – 34 35 – 39 40 – 44 45 – 49 50 – 54 55-59 60-64
No. of Girls 4 10 8 11 8 6 3

(a) State the modal class.                                                                                           (1mk)
(b) Using an assumed mean of 47,
(i) Estimate the mean weight                                                                                (3mks)
(ii) Calculate the standard deviation.                                                                      (4mks)

 

 

 

 

 

 

 

 

 

 

  1. The table below shows values of y = a Cos (x – 15) and y = b sin (x + 30)
X 0 15 30 45 60 75 90 105 120 135 150
a Cos(x-5) 0.97       0.71 0.5       -0.5 -0.71
b sin(x+3) 1.00       2.00       1.00   0.00

(a) Determine the values of a and b                                                                               (2mks)
(b) Complete the table                                                                                                  (2mks)
(c) On the same axes draw the graphs of y = across(x – 15) and y = b sin(x + 30)            (3mks)
(d) Use your graph to solve ½ cos (x – 15) = sin(x + 30)                                                 (1mk)

21.    The diagram below is a clothing workshop. Ð ECJ = 30o AD, BC, HE, GF are vertical

walls. ABHG is horizontal floor. AB = 50m, BH = 20m,  AD=3m

 

 

 

(a) Calculate DE                                                                                                           (3mks)
(b) The angle line BF makes with plane ABHG                                                              (2mks)
(c) If one person requires minimum 6m3 of air, how many people can fit in the workshop         (3mks)

  1. To transport 100 people and 3500 kg to a wedding a company has type A vehicles which take          10 people and 200kg each and type B which take 6 people and 300kg each. They must not use more

than 16 vehicles all together.
(a)     Write down 3 inequalities in A and B which are the number of vehicles used and plot them

in a graph.                                                                                                           (3mks)
(b)     What is the smallest number of vehicles he could use.                                          (2mks)

(c)     Hire charge for type A is Sh.1000 while hire for type B is Sh.1200 per vehicle. Find the cheapest

hire charge for the whole function                                                                        (3mks)

A circle centre A has radius 8cm and circle centre B has radius 3cm. The two centres are

12cm apart. A thin  tight string is tied all round the circles to form interior common tangent. The tangents CD and EF intersect at X.

(a) Calculate AX                                                                                                           (2mks)
(b) Calculate the length of the string which goes all round the circles and forms the tangent.
(6mks)

 

  1. Airport A is 600km away form airport B and on a bearing of 330o. Wind is blowing at a speed of

40km/h from 200o. A pilot navigates his plane at an air speed of 200km/h from B to A.
(a)     Calculate the actual speed of the plane.                                                                (3mks)
(b)     What course does the pilot take to reach B?                                                          (3mks)
(c)     How long does the whole journey take?                                                                (2mks)

 

MATHEMATICS V

PART I

MARKING SCHEME

 

1 SOLUTION MKS AWARDING
  No         Log

13.6        1.1335   +

Cos 40    1.8842

1.0177   –

63.4       1.8021

1. 2156

(4 + 3.2156) 1/4

1.8039

Antilog    0.6366

 

B1

 

M1

 

 

M1

 

A1

 

Log

 

+

 

 

divide by 4

 

C.A.O

    4  
2. (x + 3) (x + 3 – 5) = 0

(x +3)b (x – 2) = 0

x = -3 or x = 2

M1

 

A1

 

Factors

 

Both answers

3 BD = C Sin 30  = 0.05

CD = b Cos 25

= 0.9063b

‹ BC = 0.9063b + 0.5 C

B1

 

B1

B1

 

BD in ratio from

 

CD in ratio form

Addition

    3  
4  Dy  = 3 – 3x2
dx
x = 2, grad = 1
9
Point (2,3)
y – 3  = 1
x – 2     9

9y – 27  = x – 2
9y – x   =  25

B1

 

B1

 

M1

 

 

A1

 

Grad equ

 

Grad of normal

 

Eqn

 

 

Eqn

 

    4  
5   700 = 100 + n
2200 = 400 + n

1500 = 300m

m = 5

n = 200

P = 5 + 200
q2
When q = 5 P = 13

M1

 

 

A1

 

 

B1

B2

Equan

 

 

Both ans

 

 

Eqn (law)

Ans (P)

    4  
 

6

 

4 Sin x + 2 cos y = 6

3 Sin x – 2 Cos y = 1
7 sin x                  = 7

Sin x            = 1

X                = 90

Cos y          = 1

Y        = 0o

 

M1

M1

 

 

A1

 

B1

 

Elim

Sub

 

 

 

 

 

7 2(x +1) – 1(x + 2) + x + 2

(x+2) (x +1)
= 2x +2 – x – 2 + x = 2

(x +2) (x + 1)

=     2x + 2

(x + 2)  (x + 1)

=     2
x + 2

M1

M1

 

 

 

A1

Use of ccm

Substitution

 

 

 

Ans

8 (-2 – ½ x)5  = 25  – 5 (2)4 ( ½ x) + 10(2)3( ½ x)2

=  32 – 40x + 20x2

= 32 – 4 (0.08) + 20 (0.08)2

= 32 – 0.32 + 0.128
= 3

M1

A1

 

M1

A1

 

 

 

 

 

    4  
9. Circle centre C = (3 +1,   0 + 4)

2                 2

C( 2, 2)

R =Ö (2 – 0)2 + (2 – 3)2

=Ö 5

(y – 2)2 + (x – 2)2 = Ö5

y2 + x2 – 4y – 4x =  8 + Ö5

B1

 

B1

 

M1

 

A1

Centre

 

Radius

 

 

 

 

    4  
10  ar2 =2,  ar5 = 16

a  = 2  \ 2 r5 = 16

r2       r2

2r3 = 16

r3 = 8

r = 2, a = ½

 

S5= ½ (1 – ( ½ )5)

½

= 1 – 1/32

= 31/32

M1

 

 

 

 

A1

 

M1

 

 

A1

 

 

 

 

 

Both

 

Sub

 

 

CAO

    4  
11 NR – 3MT2  = 2RT2

T2(2R + 3M) = NR

T2   =   NR

2R + 3m

T =  ! Ö  NR
2R + 3m

M1

 

M1

 

A1

X mult

 

72

 

ans

    3  
12  2  = m   2   + n    6

2            0           4

2 = 2m + 6n

2 = 0 + 4n

n = ½

m = – ½

\a = – ½ b + ½ c

\a b c are linearly dep

M1

 

 

 

 

A1

 

B1

 
    3  
13 Volume = 22 x 2.1 x 2.1 x 2 x ¾ m3

7

Time = 11 x 0.3 x 2.1 x 3 x 1,000,000

500 x 3600

= 11.55

= 11.33 hrs

time to fill = 8.03 pm

M1

 

 

M1

 

 

 

A1

 
    3  
14 Mass = 54   x  1.2 x 1,000,000

90              1000

= 720kg

M1

 

A1

 
    2  
15 V3 = P

P(0.9)3     = 200,000

P = 200,000

0.93

= 200,000

0.729

= Sh 274,348

M1

 

M1

 

 

 

A3

 
    3  
16 No of hours = 8 x 12 x10 x 20

8 x 18 x 25

= 19200

3600

= 5hrs, 20 min

M1

 

 

 

A1

 
    2  
17  Taxable income = 8100 + 2400

= sh. 10,500

=   ₤6300

Tax dues      = Sh 1980 x 2 + 1980 x 3 + 1980 x 5 + 3670 x 7

12

= 22320

12

= Sh 1860

net tax = 1860 – 800 p.m.

= Sh 1060

Total deduction = 1060 + 150 + 730

= 1940

Net salary = 10,500 – 1940

= Sh 8560 p.m.

B1

 

 

M1

M1

 

A1

 

B1

 

B1

 

M1

A1

Tax inc

 

 

2

2

 

 

 

net tax

 

total dedu.

    8  
18 OR = 2/3 a + 1/3b or (1/3 (2a + b)

AP = 2/5 b – a

OY = m OR = A + n (2/5b – a)

2/5m b + ma = (1 – n)a + 2/5 n b

2/5m = 2/5n
m = n

\m = 1 – m

2m = 1

m  = ½ = n

½ AP = Ay

AY:AP = 1:1

B1

B1

 

B1

M1

M1

A1

A1

 

 

B1

 

 

 

EXP, OY

Eqn

M = n

Sub

CAO

 

 

Ratio

    8  
 

19

 

 

 

 

Log y = n log x + log a

Log a = 0.9031

A = 8

Grad = 1.75 – 0.5

0.4 + 0.2

= 1.25
0.6

= 2.08

n = 2

\y = 8x2

x = 3  y = 8 x 32   = 72

y = 200           x = 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1

B1

 

 

 

B1

 

B1

B1

S1

P1

L1

 

 

 

 

Log x

Log y

 

 

 

A

 

N

Missing x and y

Scale

Points

Line

    8  
 

 

 

20

 

 

 

P (same colour) = P (XRRrr orXBB or YXX or YBB)

= ½ (2/5 x ¼ + 3/5 x 2/4)  x 2

2  +  6
20     20

=    8
20

2/5

(b) P(at least 1B) = 1 – P(non blue)

= 1 – P (XRR or YRR)

= 1 – ½ (2/5 x ¼) x 2

= 1 – 1/10

= 9/10

(c) P(at most 2 Red) = 1 – P (BB)

= 1 – ½ (3/5 x 2/4)2

= 1 – 6/20

= 14/20 or 7/10

 

 

 

M1

M1

 

M1

 

A1

 

 

M1

 

A1

M1

 

 

A1

 

 

 

Any 2

Any 2

 

Fraction

 

 

    8  
21 (a) PQ  = 1800nm

q     =     1800

60 x 0.6428

= 46.67

= 47o

Q (50oN, 37oE)

 

(b) Time diff = 47 x 4
60

= 3.08

Time at P = 9.12am

(c) QR = 2700 nm

x o   = 2700

60

= 45o

R (85oN, 133oW)

M1

 

 

 

A1

 

 

M1

 

A1

 

M1

 

 

A1

B1

 
    8  
 

 

22

   

 

 

 

B1

B1

 

B1

B1

B1

B1

B1

B1

 

 

 

 

 

Bisector of 150

Bisector 75

 

AB  AC

^ at A

Bisector AC

Circle

Ð AB

Locus P with A  B excluded

    8  
24                           A1B1 C1D1

2  2  1 3 3 1   =  4  8 10 6

1  3  1 1 2 2       4  6  9  7

 

A11 B11 C11  D11

-1   0     4  8 10  6       =   -4  –8   -10   -6

0 –2     4  6  9   7            -8   -12  -18  -14

 

NM =   -1  0        2  2

0 –2       1  3

 

=  -2  -2

-2   -6

 

 

(b)      det  = Asf  =  12 – 4    = 8

Area A11 B11 C11 D11  = 8 x 8

= 64  U2

(c) Single matrix = Inv N
= ½    -2 –  0

0       –1

 

=     -1     0

0       – ½

 

 

B1

 

 

B1

 

 

 

 

 

 

 

 

 

 

B1

M1

A1

 

 

 

 

B1

 

 

Product

 

 

Product

 

 

 

 

 

 

 

 

 

 

Det

 

 

 

 

 

 

Inverse

    6  
23  

Ds  = 20t  – 3t2 + 8 =0

Dt     3t2 – 20t – 8 = 0

T =  20 !  Ö400 + 4 x 3 x 8

6

t = 7.045 sec

max vel          = 148.9 – 140.9 – 8

= 0.9 m/s


d2 s
  = 6t – 20

dt2

when t = 3   a = -2m/s2

6t – 20 = 0

6t  = 20

t = 3 2/3 sec

 

 

M1

 

A1

M1

A1

M1

 

A1

M1

 

A1

 
    8  
       

 

 

 

 

 

 

 

 

MATHEMATICS V

PART II

MARKING SCHEME

 

No Solution Mks Awarding
1  2744 x 125   1/3

1000            8

 

2744  1/3  x   53     1/3

1000            23

 

23 x 73  1/3  x   5

103                         2

 

2 x 75   = 3.5

10      2

 

 

 

M1

 

 

 

 

M1

A1

 

 

 

Factor

 

 

 

 

Cube root

 

    3  
2 (i) Highest – 10 x 7.5 = 75

Lowest  – 6 x 4 =  24

51

(ii) Highest = 7.5 = 1.875

4

Lowest = 6   = 0.600

10   1.275

M1

A1

 

M1

 

A1

Highest

 

 

Fraction

 

 

    4  
3 Cos q  =  17  = 0.8095

21

 

q = Cos 0.8095

= 36.03o

 

Arc length = 72. 06 x 2 x 22 x 21

360                       7

= 26.422cm

M1

 

 

A1

 

 

M1

 

A1

 

 

 

q

    4  
4  x2 – 2x(x +3) = 0

x2 – 2x2 – 6x = 0

-x2 – 6x = 0

either x = 0

or  x = 6

M1

 

M1

 

A1

Equ

 

Factor

 

Both A

    3  
 

 

5

 

8  = x  x 2 x 22 x 28 Cos 60o

360            7

 

8 =  x    x 44 x 28 x 0.5

360         7

x =   8 x 360 x 7
        44 x 28 x 0.5

= 32.73o

= 33o

 

 

M1

 

 

 

 

M1

 

A1

B1

 

 

 

 

 

 

 

x exp

 

 

 

6

 

 

 

ÐDMC = Ð AMB vert. Opp = q

ÐMAB  = Ð MDC = 180 – q BASE Ls of an isosc. <

2
Ð MBA = Ð MAC   180 – q base angles of isos <

2

<’s AMC and < CDM are equiangle

 

\ Similar proved

 

 

 

 

B1

 

 

 

 

 

B1

 

B1

 
    3  
7 Tan x = 5/12

h = Ö b2 + 122

= Ö25 + 144

= Ö169

= 13

 

1 – Sinx               =       1 – 5

sin x + 2 Cos x      5/13 + 2 x 12/13

 

12/13      = 12 x 13  =  12

29/13          13   29      29

 

 

 

 

 

 

 

 

 

 

 

 

 

M1

M1

 

A1

 

 

 

 

 

 

 

 

 

 

 

 

 

Hypo

Sub

 

    3  
8 Y = x 2 + 2

 

 

 

 

 

Area = h (y1, = y2 +……..yn)

= 1(2.225 + 4.25 + 8.25 +14.25 + 22.25)

= 51.25 sq units

 

 

 

B1

 

 

M1

 

A1

 

 

 

Ordinals

    3  
 

9

ÐCBA = 117o

Ð ACD = 55

Ð BAC = 180 – (117 + 55) = 8o

 

 

 

 

 

 

 

 

 

 

 

 

 

B1

B1

B1

 

3

 
10  

 

 

 

B1

B1

B1

B1

1994

1996

1997

1998

    4  
11. Xy = 35

y = 35/x

9x – 9y = -18

Sub x2 + 2x – 35 = 0

x2 + 7x – 5x – 35 = 0

x (x + 7) – 5(x + 7) = 0

(x – 5) (x + 7) = 0

x  = -7

x = +5

y = 7

Smaller No.

= 57

= 75

B1

 

M1

 

 

 

 

A1

 

 

 

B1

 

 
    3  
12 Log5 (2x – 1 )4  = log552

20

4(2x – 1)  = 52

20

2x – 1 = 25

5

2x – 1 = 125

2x = 126

x = 63

M1

 

M1

 

 

 

 

 

A1

 
    3  
13 C.P = 100 x 49.50

110

= 45/-

52x + 40y = 45

x + y

45x + 45y  = 52x + 40

-7x  = -54

x/y  = 5/7

x : y = 5 : 7

 

 

B1

M1

 

 

M1

 

A1

 
    4  
14  

2n – 4 it angle = 172

n

(2n – 4) x 90 = 172n

n

90 (2n – 4) x 90 = 172

n

180 n – 360 = 172n

180n – 172n = 360

8n = 360

n = 45

 

M1

 

A1

 

M1

 
    2  
15 2 x = 2.    1    +    3.    1

6.341                  9.22

2x = 2 x 0. 1578 + 3 x 0.1085

= 0.3154 + 0.3254

= 0.6408

x = 0.3204

 

 

B1

 

 

A1

 

 

Tables

    2  
16 Bearing 140o

Sin q = 20 Sin 110

40

= 0.4698

= 228.02

Bearing of A from B = 198.42

 

M1

 

 

A1

B1

 
    3  
17 Points that each tap fills in one hour

 

A =  1   B  = 1       C – 1
          50         25            20

In one hour all taps can fill = 1  +  1   +  1   =  11

50    25      20     100

In 6hrs all can fill =  11  x 6 = 33 parts

100                 50

taps A and B can fill =  = 1  +  1  = 3 part in 1 hr

50    25    50

In 4 1 hrs, A and B =  25 x 3  +  1

6                           6     50     4

Parts remaining for B to fill = 1 – 33  +  = 1  – 91   = 9 parts

50         4           100    100

Time  taken =  9  x  25  hrs = 2 ¼ hrs

100          1

7.30 am

6.     hrs

13.30

  4.10

5.40pm

  2.15

  7.55 pm

 

 

 

M1

 

 

 

B1

 

 

 

 

 

B1

 

B1

 

 

 

 

 

M1

 

A1

 

 
 

 

18

 

 

 

 

 

 

 

 

x2 + x – 8 = -2 – 2x

y = x2 + 3x – 6

Points of intersection (-4, 1.4)

y = x2 + x – 8 = 2x2 + 3x – 6

x2 + 2x + 2

y = x2 + x – 8 x 2

2y = 2x2 + 2x – 16

0 = 2x2 + 3x – 6

2y = -x  – 10

y = – 2.6

Ny = 1.2

 

8

 

 

 

 

 

 

 

B1

B1

 

 

 

 

 

B1

 

B1

 

 

 

 

 

 

 

 

Eqn

Point of inter

 

 

 

 

 

Line eqn

 

Both

 

 

19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)    Modal class = 45 – 49

(i)               Mean = 47 + -55

50

= 47 – 1.1

= 45.9

 

(ii) Standard deviation = Ö 3575 –  –55 2
50         50

=  Ö71.5   – 1.21

=Ö 70.29

= 8.3839

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

B1

B1

 

 

 

 

M1

 

 

A1

B1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fd

fd2

    8  
20  

 

 

 

 

 

 

 

 

(a)    a =   1
b = 2

½ cos (x – 15) = Sin (x + 30)

has no solution in the domain

 

 

 

 

 

 

 

 

B1

B1

B1

 

B1

 

 

 

 

 

 

 

 

All

All

A & b

 

 

    8  
21 (a)       O Cos 30 = 20

X

X =  20

0.866

= 23.09

 

DE = Ö 502   + 23.092

= Ö 2500 + 533.36

= Ö 3033.36

= 55.076m

 

(b)       GB =  Ö 202  + 502

= 53.85

Tan q = 14.55
53.85

=  0.27019

q    = 15.12o

 

 

 

 

B1

 

M1

 

 

 

A1

 

 

M1

 

 

A1

 
  8  
  (c)       Volume of air = 50 x 20 x 3 + ½ x 20 x 11.55 x 50

= 3000 + 5775

= 8775

No. of people  =   8775
                               6

= 1462.5

j 1462

 

M1

 

M1

 

 

A1

 
    8  
22 (a)    A + B [ 16

5A + 3B ³ 50

2A + 3B [ 35

 

 

(b)   14 vehicles

 

(c)    A – 6 vehicles

B –  8

Cost = 6 x 1000 + 8 x 1200

= 6000 + 9600

= 15,600/=

 

 

B1

 

 

B1

 

B1

 

M1

 

A1

 

 

 

In equation 3

 

 

Vehicles

    8  

23

 

 

 

 

 

 

 

 

 

 

 

 

 

x        =      8

12 – x           3

 

= 8.727

FBX =    3    =  0.9166   = 23.57
3.273

 

3FBX = 47.13

 

Reflex  Ð FBD = 312.87

 

Reflex arc FD = 312.87   x 22  x 6
360           7

 

= 16.39cm

Reflex Arc CE = 312.87 x 22 x 16
360         7

 

=  43.7cm

 

FE (tangent) =  Ö144 – 121

= Ö 23

= 4.796cm

2 FE            =  9.592

 

Total length = 9.592 + 4.796 + 43.7 + 16.39

= 74.48 cm2

 

 

 

 

 

 

 

 

 

M1

 

 

A1

 

 

 

 

 

 

 

M1

 

 

A1

 

M1

 

 

A1

 

 

 

 

 

 

M1

A1

 
    8  

24

 

 

 

 

 

 

 

 

 

 

 

 

(a)         200      =    40

Sin 50       Sin q

 

Sin q =  40Sin 50
                200
= 0.7660
5
=0.1532

q         = 8.81o

Ð ACB = 180 – (50 + 8.81)o

= 121.19o

    x             =   200
Sin 121.19     Sin 50

 

= 200 x Sin 121.19
Sin 50

= 200 x 0.855645
0.7660

= 223.36Km/h

 

(b)  Course = 330o – 8.81o

= 321.19o

 

(c) Time  =    600
321.19o

 

= 2.686 hrs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M1

 

 

 

 

 

 

A1

 

 

 

M1

 

 

M1

 

 

A1

 

B1

 

 

 

M1

 

A1

 

 

8

 

 

 

 

MATHEMATICS VI

PART I

 

SECTION I (52 MARKS)

 

 

  1. Evaluate without mathematical tables leaving your answer in standard form

0.01712 X 3

855 X 0.531                                                                                                                  (2 Mks)

  1. Six men take 14 days working 8 hours a day to pack 2240 parcels. How many more men working

5 hours a day will be required to pack 2500 parcels in 2 days                                                      (3 Mks)

 

 

 

 

 

  1. M                                  In quadrilateral OABC, OA = 4i – 3j. OC = 2i + 7j

AB = 3OC. cm: mB = 2:3. Find in terms of  i and j

C                                                           vector Om                                           (3 Mks)

 

 

 

 

 

O                                                A

 

  1. By matrix method, solve the equations

5x + 5y = 1

4y + 3x = 5                                                                                                                         (3 Mks)

 

 

  1. In the given circle centre O, ÐABC = 1260.

Calculate ÐOAC                                           (3 Mks)

 

A                                     C

 

 

 

B

 

  1. Solve the equation

2(3x – 1)2 9 (3x – 1) + 7 = 0                                                                                               (4 Mks)

  1. Maina, Kamau and Omondi share Shs.180 such that for every one shilling Maina gets, Kamau gets 50

Cts and for every two shillings Kamau gets, Omondi gets three shillings. By how much does Maina’s

share exceed Omondi’s                                                                                                         (3 Mks)

  1. Expand (2 + 1/2x)6 to the third term. Use your expression to evaluate 2.46 correct to 3 s.f     (3 Mks)
  2. The probability of failing an examination is 0.35 at any attempt. Find the probability that

(i)   You will fail in two attempts                                                                                  (1 Mk)

(ii)   In three attempts, you will at least fail once                                                                       (3 Mks)

  1. Line y = mx + c makes an angle of 1350 with the x axis and cuts the y axis at y = 5. Calculate the

equation of the line                                                                                                             (2 Mks)

  1. During a rainfall of 25mm, how many litres collect on 2 hectares? (3 Mks)
  2. Solve the equation a 3a – 7 = a – 2 (3 Mks)

3       5          6

  1. The sum of the first 13 terms of an arithmetic progression is 13 and the sum of the first 5 terms is

–25. Find the sum of the first 21 terms                                                                                (5 Mks)

  1. The curved surface of a core is made from the shaded sector on the circle. Calculate the height of

the cone.                                                                                                                            (4 Mks)

 

 

 

 

 

O

20cm      1250                   20 cm

 

 

 

 

 

 

  1. Simplify (wx – xy – wz + yz) (w + z) (3 Mks)

z2 – w2

  1. The bearing of Q from P is North and they are 4 km apart. R is on a bearing of 030 from P and on

a bearing of 055 from Q. Calculate the distance between P and R.                                        (3 Mks)

 

SECTION II (48 MARKS)

  1. In the given circle centre O, ÐQTP = 460, ÐRQT = 740 and ÐURT = 390

 

 

U                                                   T                                P

 

 

Q

S          390

      Calculate                                                                                    R

(a)  ÐRST                                                        (1 Mk)

(b)  ÐSUT                                                       (3 Mks)

(c)  Obtuse angle ROT                                    (2 Mks)

(d)  ÐPST                                                        (2 Mks)

  1. The exchange rate on March 17th 2000, was as follows: –

1 US$ = Kshs.74.75

1 French Franc (Fr) = Kshs.11.04

      A Kenyan tourist had Kshs.350,000 and decided to proceed to America

(a)  How much in dollars did he receive from his Kshs.350,000 in 4 s.f?                               (2 Mks)

(b) The tourist spend  ¼  of the amount in America and proceeded to France where he spend Fr

16,200. Calculate his balance in French Francs to 4 s.f                                                   (3 Mks)

(c) When he flies back to Kenya, the exchange rate for 1 Fr = Kshs.12.80. How much more in

Kshs. does he receive for his balance than he would have got the day he left?                 (3 Mks)

  1. On the provided grid, draw the graph of y = 5 + 2x – 3x2 in the domain -2 £ x £ 3               (4 Mks)

(a) Draw a line through points (0,2) and (1,0) and extend it to intersect with curve y = 5 + 2x – 3 x 2

read the values of x where the curve intersects with the line                                         (2 Mks)

(b)  Find the equation whose solution is the values of x in (a) above                                     (2 Mks)

  1. (a) Using a ruler and compass only, construct triangle PQR in which PQ = 3.5 cm, QR = 7 cm

and angle PQR = 300                                                                                                     (2 Mks)

(b)  Construct a circle passing through points P, Q and R                                                     (2 Mks)

(c)  Calculate the difference between area of the circle formed and triangle PQR                   (4 Mks)

  1. The given Region below (unshaded R) is defined by a set of inequalities. Determine the inequalities (8 Mks)

Y

 

4

 

 

 

2                   R              (3,3)

  

 

X

-3                           5

 

 

 

 

 

 

 

  1. The table below shows the mass of 60 women working in hotels

 

Mass (Kg) 60 – 64 65 – 69 70 – 74 75 – 79 80 – 84 85 – 89
No. of women 8 14 18 15 3 2

 

(a)   State (i)   The modal class                                                                                             (1 Mk)

(ii)  The median class                                                                                           (1 Mk)

(b)   Estimate the mean mark                                                                                                           (4 Mks)

(c)   Draw a histogram for the data                                                                                       (2 Mks)

  1. XY, YZ and XZ are tangents to the circle centre O

at points A, B, C respectively. XY = 10 cm,

YZ = 8 cm and XZ = 12 cm.                                                                                         (2 MKS)

Z

 

 

C

 

 

 

 

..                    B

X

 

A                    Y

 

 

(a)  Calculate, length XA                                                                                                    (2 Mks)

(b)  The shaded area                                                                                                                  (6 Mks)

  1. Maina bought a car at Kshs.650,000. The value depreciated annually at 15%

(a)  After how long to the nearest 1 decimal place will the value of the car be Kshs.130,000        (4 Mks)

(b)  Calculate the rate of depreciation to the nearest one decimal place which would make the value of

the  car be half of its original value in 5 years                                                              (4 Mks)

 

MATHEMATICS VI

PART II

SECTION 1 (52 MARKS)

 

 

  1. Simplify 32a10   -2/5 ÷  9b4      11/2

b15             4a6                                                                                                 (2 Mks)

 

  1. Use logarithm tables to evaluate

Ö0.375 cos 75

tan 85.6                                                                                                       (4 Mks)

  1. The marked price of a shirt is Shs.600. If the shopkeeper gives a discount of 20% off the marked price, he makes a loss of 4%. What was the cost of the shirt? (3 Mks)
  2. The surface area (A) of a closed cylinder is given by A = 2pr2 + 2prh where r is radius and h is height of the cylinder. Make r the subject. (4 mks)
  3. In the circle centre O, chords AB and CD intersect at X. XD = 5 cm

      XC = 1/4 r where r is radius. AX:XO = 1:2 Calculate radius of the circle.                             (3 mks)

 

A             5cm       D

 

 

C                O

 

B

 

 

  1. Simplify     2       –        1                                                                                             (3 mks)

5 – 2Ö3     5 + 2Ö3

 

 

  1. P is partly constant and partly varies as q2. When q = 2, P = 6 and when q = 3, P = 16. Find q when P = 64                               (4 mks)
  2. The figure on the side is a tent of uniform cross-section A                           F

ABC. AC = 8m, BC = 8m, BD = 10m   and (ACB = 1200.                  8m

If a scout needs 2.5 m3 of air, how many scouts can fit                      120o C                     E

in the tent.                                                                                                            8m                   (4 mks)

B                              D

10m

  1. The length of a rectangle is given as 8 cm and its width given as 5 cm. Calculate its maximum % error in its perimeter                (3 mks)
  2. ABCD is a rectangle with AB = 6 cm, BC = 4 cm AE = DH = 4 cm BF = CG = 12 cm. Draw a

labelled net of the figure and show the dimensions of the net

  1. Expand (1 + 2x)6 to the 3rd term hence evaluate (1.04)6 (4 mks)
  2. The eye of a scout is 1.5m above a horizontal ground. He observes the top of a flag post at an

angle of elevation of 200. After walking 10m towards the bottom of the flag post, the top is observed at angle of elevation of 400. Calculate the height of the flag post                                  (4 mks)

  1. A bottle of juice contains 405ml while a similar one contains 960ml. If the base area of the

larger Container is 120 cm2. Calculate base area of the smaller container.                             (3 mks)

  1. It takes a 900m long train 2 minutes to completely overtake an 1100m long train travelling at

30km per hour. Calculate the speed of the overtaking train                                                  (3 mks)

  1. Okoth traveled 22 km in 23/4 hours. Part of the journey was at 16 km/h and the rest at 5 km/h.

Determine the distance at the faster speed                                                                           (3 mks)

  1. P and Q are points on AB such that AP:PB = 2:7 and AQ:QB = 5:4 If AB = 12 cm, find PQ

(2 Mks)

SECTION B (48 MARKS)

 

  1. The income tax in 1995 was collected as follows:

      Income in Kshs. p.a                rate of tax %

1 – 39,600                               10

39,601 – 79,200                               15

79,201 – 118,800                             25

118,801 – 158,400                           35

158,401 – 198,000                           45

      Mutua earns a salary of Kshs.8,000. He is housed by the employer and therefore 15% is added to his salary to arrive at its taxable income. He gets a tax relief of Shs.400 and pay Shs.130 service charge. Calculate his net income                                                                                    (8 Mks)

  1. The probability Kioko solves correctly the first sum in a quiz is 2/5 Solving the second correct

is 3/5 if the first is correct and it is 4/5 if the first was wrong. The chance of the third correct is

2/5 if the second was correct and it is 1/5 if the second was wrong. Find the probability that

(a)  All the three are correct                                                                                    (2 Mks)

(b)  Two out of three are correct                                                                              (3 Mks)

(c)  At least two are correct                                                                                     (3 Mks)

  1. A businessman bought pens at Shs.440. The following day he bought 3 pens at Shs.54. This

purchase reduced his average cost per pen by Sh.1.50. Calculate the number of pens bought earlier and the difference in cost of the total purchase at the two prices                                      (8 mks)

 

 

 

 

  1. In D OAB, OA = a, OB = b

OPAQ is a parallelogram.

      ON:NB = 5:-2, AP:PB = 1:3

Determine in terms of a and b vectors

(a)  OP                                                                                                                   (2 Mks)

(b)  PQ                                                                                                                   (2 Mks)

(c)  QN                                                                                                                   (2 Mks)

(d)  PN                                                                                                                   (2 mks)

 

  1. A cylindrical tank connected to a cylindrical pipe of diameter 3.5cm has water flowing at 150

cm per second. If the water flows for 10 hours a day

(a)  Calculate the volume in M3 added in 2 days                                                                   (4 ms)

(b) If the tank has a height of 8 m and it takes 15 days to fill the tank, calculate the base radius

of the tank                                                                                                                     (4 mks)

  1. A joint harambee was held for two schools that share a sponsor. School A needed Shs.15 million while

School B needed 24 million to complete their projects. The sponsor raised Shs.16.9 million while other

guest raised Shs.13.5 million.

(a) If it was decided that the sponsor’s money be shared according to the needs of the school

with the rest equally, how much does each school get                                               (5 mks)

(b) If the sponsor’s money was shared according to the schools needs while the rest was in the  ratio of

students, how much does each school get if school A has 780 students and school B 220

students                                                                                                                        (3 mks)

  1. Voltage V and resistance E of an electric current are said to be related by a law of the form

V = KEn where k and n are constants. The table below shows values of V and E

      V

0.35 0.49 0.72 0.98 1.11
E 0.45 0.61 0.89 1.17 1.35

      By drawing a suitable linear graph, determine values of k and n hence V when E = 0.75(8mks)

  1. The vertices of triangle P,Q,R are P(-3,1), Q (-1,-2), R (-2,-4)

(a)  Draw triangle PQR and its image PIQIRI of PQR under translation T =    3    on the provided grid                                                                                                                4                        (2 Mks)

(b)  Under transformation matrix m =    4  3  , PIQIRI is mapped on to PIIQIIRII. Find the

co-ordinates of PIIQIIRII and plot it   1  2    on the given grid                                          (4 Mks)

(c)  If area of D PIQIRI is 3.5 cm2, find area of the images PIIQIIRII                                        (2 Mks)

 

MATHEMATICS VI

PART 1

MARKING SCHEME

 

  1. 171 X 171 X 3 X 10-5 M1

                                  855 X 531

= 2 X 10-6                                                                                     A1

  2

 

  1. No. of men = 6 X 14 X 8 X 2500 M1

                                  2 X 5 X 2240

= 75                                                                            A1

Extra men        = 75 – 6 = 69                                                                B1

 3

  1. OM = 2i + 7j + 2/5 (4i – 3j + 6i + 21j – 2i – 7j) M1

= 2i + 7j + 2/5 (8i + 11j)                                                           M1

= 26 i + 57 j

5       5                                                                               A1

  3

 

 

 

 

 

  1. 2 5       x         =      1

3  4       y                   5                                                                                    M1

 

x          -1/7   5/7       1

y    =     3/7   -2/7      5                                                                M1

 

x    =  3

y       -1

 

x, 3, y = -1                                                                                A1

 3

 

  1. Reflex ÐAOC = 126 x 2 = 2520 B1

Obtuse ÐAOC = 360 – 252 = 1080                                                               B1

= 1/2 (180 – 108)0

= 360                                                                                B1

 3

  1. 18x2 – 39x + 18 = 0

6x2 – 13x + 6 = 0                                                                                         B1Ö equation

6x2 – 9x – 4x + 6 = 0

3x(2x – 3) (3x – 2) = 0                                                                                  M1

x = 2/3  or                                                                                  A1

x =1 ½                                                                                      B1

4

 

  1. M :  K  :  O  =  4 : 2 : 3                                                                              B1Ö ratio

      Maina’s  = 4/9 X 180

= 80/-                                                                                     B1Ö Omondi’s

      Omondi’s = 60/-                                                                                          and Maina’s

      Difference = Shs.20/-                                                                                   B1 difference

3

  1. (2 + 1/2x)6 = 26 + 6(25) (1/2x + 15 (24) (1/2 x)2 M1

= 64 + 96x + 60x2                                                                     A1

2.46      = (2 + 1/2 (0.8))6

= 64 + 96 (0.8) + 60 (0.64)                                                        M1

= 179.2

@179 to 3 s.f                                                                             A1

 4

  1. P (FF) = 7/20 X 7/20

= 49/100                                                                                                            B1

P (at least one fail) = 1 – P (FI FI FI)

= 1- 13/20   3                                                      M1

= 1 – 2197                                                       M1

8000

= 5803

                                                     8000                                                                        A1

 4

 

  1. grad = term 135

= -1                                                                                                            B1

y  = mx + c

y  = -x + 5                                                                                          B1

 2

 

  1. Volume = 2 x 10,000 x 10,000 x 25 M1Ö x section area

1000                 10                                                            M1Ö conv. to litres

= 500,000 Lts                                                               A1

 3

 

  1. 10a – 6(3a – 7) = 5(a -2) M1

10a – 18a + 42 = 5a – 10

– 13a    = -52                                                                                        M1

a        = 4                                                                                           A1

 3

  1. 2a + 12d = 2

2a + 4d = -10                                                                                              M1

8d   = 12

d   = 11/2                                                                                                   A1

a   = -8                                                                                                     B1

S21  = 21/2 (-16 + 20 X 3/2)                                                                           M1

= 147                                                                                             A1

 5

 

  1. 2 p r = 120 x p x 40 M1

360

r = 6.667 cm                                                                                         A1

h =  Ö 400 – 44.44                                                                                 M1

= 18.86 cm                                                                                          A1

 4

  1. = (w (x – z) – y (x – z)) (w + z) M1Ö factor

(z – w) (z + w)

= (w – y) (x – z) (w + z)                                                             M1Ö grouping

(z – w) (z + w)

= (w – y) (x – z)

z – w                                                                                         A1

 3

 

R

250                                                                                B1Ö sketch

  1. 550

Q  125                                            PR = 4 sin 125                                              M1

Sin 25

A1

30

P                                                                                                          3

  1. (a) <RST = 1800 – 740 = 1060                                                              B1

(b) < RTQ = 900– 740           = 160                                                                B1

< PTR = 460 + 160         = 620                                                                B1

< SUT = 620 – 390         = 230                                                                B1

(c)  Reflex ÐRQT = 180 – 2 x 16

= 180 – 32 = 1480                                                                      B1

Obtuse ROT = 360 – 148 = 2120                                                                   B1

(d)  < PTS = 46 + 180 – 129 = 970                                                                      B1

< PST = 180 – (97 + 39) = 440                                                                      B1

8

(a)  Kshs.350,000 = $ 350,000                                                                           M1

74.75

= $ 4682                                                                                   A1

(b) Balance             = 3/4 x 4682

= $ 3511.5                                                                          B1

$3511.5      = Fr 3511.5 x 74.75                                                                   M1

11.04

= Fr 23780                                                                    A1

Expenditure      = Fr 16 200

Balance            = Fr 7580

(c) Value on arrival = Kshs.7580 X 12.80

= Kshs.97,024

Value on departure        = Kshs.7580 X 11.04                                                              B1 bothÖ

= Kshs.83 683.2

Difference                      = Kshs.97,024 – 83683.2                                         M1

= Kshs.13,340.80                                                   A1

 8

X -2 -1 0 1 2 3
Y -11 0 5 4 -3 -16

B1Övalues

 

y

S1Ö scale

8 —                                                                P1Ö plotting

6 —                                                                C1 Ö curve

4 —

2

 

-2 —    1            2          3                                x

-4 —

-6 —

-8 —                                                        y=2x=2

-10 —

-12 —

-14 —                                                                            x   =-0.53 + 0.1  BI

-16 —                                                                           Nx = 1.87+ 0.1

 

y = 5+2x-3x2 =2-2x                  MI for equation

3x2-4x-4x-3=0                   AI equation

8

x     = -0.53 ± 0.1                                                                     B1

mx   = 1.87 ± 0.1

 

 

y = 5 + 2x – 3x2 = 2 – 2x                               M1 Ö for equation

\ 3×2 – 4x – 3 = 0                                                         MA1 Ö equation

 8

 

 

 

 

 

 

 

 

 

20.

 

 

 

 

B1 Ö 300

 

R                                                                                                      B1 Ö 2 ^ PQ, QR

B1 Ö 2 ^ bisectors

B1 Ö circle

 

 

9                         Q

 

 

Radius = 4.2 ± 0.1                                                                                 B1Ö radius

Area of circle = 22/7 x 4.22

= 55.44 ± 3 cm2

Area of D PQR = 1/2 x 3.5 x 7.5 sin 30                                                    M1Ö D and circle

= 6.5625 cm2

Difference               = 55.44 – 6.5625                                                                 M1Ö sub

= 48.88 cm2                                                                       A1

 8

  1. Line (i) y/2 + x/5 = 1

5y + 2x = 10                                                                             B1Öequation

5y + 2x = 10                                                                             B1Ö inequality

      Line (ii)      y/4 + x/-3 = 1

3y = 4x + 12                                                                 B1Ö equation

3y < 4x + 12 or 3y – 4x < 12                                          B1Ö inequality

      Line (iii)     grad = -1/3 y inter = 4

3y + x = 12 or 3y = -x + 12                                            B1Ö equation

3y + x < 12                                                       B1Ö inequality

      Line (iv)      y – 3 = -3

x – 3      2

2y + 3x = 15                                                                 B1Ö equation

\         2y + 3x £ 15                                                                 B1Ö equation

  8

CLASS

F x Fx Cf
60 – 64

65 – 69

70 – 79

75 – 79

80 – 84

85 – 89

8

14

18

15

3

2

62

67

72

77

82

87

 496

938

1296

1155

246

174

8

28

40

55

58

60

  Sf = 60       Sfx 3809  

 

B1Ö x column

B1Ö f column

 

 

 

 

(a)  (i)  Modal class   = 70 – 74                                                                    B1Ö model class

(ii) Median class = 70 – 74                                                                    B1Ö median

 

(b)              Mean =  3809

                                         60                                                                           M1

= 63.48                                                                         A1

 

S1Ö scale

B1 Ö blocks

59.5 – 64.5

64.5 – 69.5 e.t.c.

 8

(c)

 

Histogram

 

 

 

20  —

 

 

15  —

 

 

10 – –

 

 

5  —

 

 

 

 

55    60        65        70        75        80        85        90

 

  1. (a) XA = a, YA = 10 – a, YB = 10 – a, CZ = 10 – a = ZB

YZ = 10 – a + 12 – a = 8                                                                         M1

2a = 14

a = 7 cm                                                                                 A1

Cos X = 100 + 144 – 64

240                                                                               M1Ö any angle of the D

= 0.75

X = 41.410

     1/2 X = 20.700                                                                                     A1Ö 1/2 of the angle

 

r = OA = 7tan 20.7                                                                                   B1 Ö radius

= 2.645 cm

Shaded area = 1/2 X 10 X 12 sin 41.41 – 22/7 X 2.6452                                    M1 Ö D & circle

= 39.69 – 21.99

= 17.7 cm2                                                                    A1Ö

 8

 

 

 

 

 

 

 

  1. (a) 650,000 (0.85)n = 130,000                                                         M1Ö formula

1.15n    = 0.2

n    = log 0.2                                                         M1Ö

log 0.85

1.3010

1.9294

= – 0.6990                                                        M1

– 0.0706

= 9.9 years                                                       A1

(b)  650,000 (1 – r/100) 5 = 325,000                                                                 M1

(1 – r/100) 5 = 0.5

1 – r/100     = 0.5 1/5                                                                   M1

= 0.8706

r/100 = 0.1294                                                                 A1

r    = 12.9 %                                                               B1

 8

MATHEMATICS VI

PART II

MARKING SCHEME

 

SECTION I (52 MARKS)

 

 

  1. = b15      2/5    X    4a6   3/2

32a10                9b4                                                                   M1Ö reciprocal

 

 

=          2a5                                                                                           A1

27                                                                                            2

 

      No.             Log.                

0.375          1.5740 +

cos 75         1.4130

2.9870 _

tan 85.6      1.1138

3.8732 =  4 + 1.8732

2                  2

2.9366

0.0864

 

  1. S. Price =  80   X 600

100

= Shs.480                                                                         B1

Cost Price = x

96x       = 480                                                                            M1

100

x  =   Shs.500                                                                      A1

 3

  1. r2 + hr = A/2p M1

r2 + hr + (h/2)2 = A/2A + h/4                                                                            M1

(r + h/2)2 =  Ö 2A + h2

4p                                                                                        M1

r    = -h/2 ±   Ö2A + h2                                                                            A1

4p                                                                               4

 

  1. (12/3r) (1/3 r) = (1/4 r) (5) M1

4r2 – qr = 0

r(4r – q) = 0                                                                                                 M1

r = 0

or   r  = 2.25                                                                                         A1

 3

 

  1. = 2 (5 + 2Ö3) – 1 (5 – 2Ö3) M1

(5 – 2Ö3) (5 + 2Ö3)

= 10 + 4Ö3 – 5 +2Ö3                                                                                                M1

13

= 5 + 6Ö3                                                                                                    A1

13                                                                                                      3

  1. P = Kq2 + c

6 = 4k + c

16 = 9k + c                                                                                     M1 Ö subtraction

5k = 10

k = 2

c = -2                                                                                                         A1 Ö k and c

      P = 64     2q2 = 66

q  = Ö33

= ± 5.745                                                                                A1

 4

  1. Volume = 1/2 X 8 X 8 sin 120 X 10 M1 Ö area of x-section

      No. of scouts = 32 sin 60 X 10                                                         M1 Ö volume

2.5                                                                               M1

= 110.8

= 110                                                                                        A1

 3

 

  1. Max. error = 2(8.5 + 5.5) – 2(7.5 + 4.5)

2

= 2                                                                                           B1

% error = 2/26 X 100                                                                                 M1

= 7.692%                                                                                  A1

G                                                                          3

 

 

  1. B1 Ö net

 

H             D                             G                       H                                  B1 Ö dimen. FE must be 10cm

 

4cm                                                                                  4cm

 

B1 Ö labelling

E 4cm  A                        12cm      F     10cm    E                                      3

4cm                12cm

E

F

  1. (1 + 2x)6 = 1 + 6(2x) + 15 (2x)2 M1

= 1 + 12x + 60x2                                                                       A1

(1.04)6 = (1 + 2(0.02))6

= 1 + 12 (0.02) + 60(0.02)2                                                        M1

= 1.264                                                                                     A1

 4

 

 

 

 

  1. BT = 10 cm                              B1

CT = 10 sin 40                          M1

= 6.428 m                                 A1

A1 10cm    B                  C                                h = 6.428 + 1.5

1-5                                  = 7.928                                  B1

  4

 

 

  1. A.S.F = 405 2/3  =  27  2/3   =   9                                                                  B1

960           64            10

smaller area = 29  X 120                                                                        M1

164

= 67.5 cm2                                                                                A1

  3

 

  1. Relative speed = (x – 30)km/h B1

2 km     =          2 hrs

(x – 30)km/h      60                                                                             M1

2x – 60 = 120

x = 90 km/h                                                                              A1

  3

  1. 16 Km/h 5 Km/hr

x Km                          (22 – x) Km

x + 22 – x   = 11

16        5           4                                                                                    M1

5x + 352 – 16x = 220                                                                 M1Ö x-multiplication

11x  = 132

x  = 12 km                                                                  A1

  3

 

  1. AP = 2/9 x 12 = 22/3 cm B1 Ö both AP & AQ

      AQ = 5/9 x 12 = 62/3 cm

\ PQ = 62/3 – 22/3 = 4 cm                                                                            B1 Ö C.A.O

  2

 

  1. Taxable income = 115/100 x 8000 M1

= Shs.9200 p. m

= Shs.110,400 p.a                                                                   A1

Tax dues = 10/100 x 39600 + 15/100 x 39600 + 25/100 x 31200                 M1 Ö first 2 slabs

= 3960 + 5940 + 7800                                                               M1 Ö last slab

= Shs.17,700 p.a

= 1475 p.m                                                                               A1

net tax = 1475 – 400

= Shs.1075                                                                             B1 Ö net tax

Total deductions = 1075 + 130

= Shs.1205

net income = 8000 – 1205                                                                      M1

= Shs.6795                                                                   A1

  8

 

 

 

 

 

(a)  P (all correct) = 2/3 x 3/5 x 2/5                                                                  M1

= 12/125                                                              A1

(b)  P (2 correct) = 2/5 x 3/5 x 3/5 + 2/5 x 2/5 X 1/5 + 3/5 x 4/5 x 2/5

                                                                                                                        M1

= 18/125 + 4/125 + 24/125                                         M1

= 46/125                                                              A1

(c) P (at least 2 correct)

= P(2 correct or 3 correct)

= 46/125 + 12/125                                                                           M1

= 46 + 12                                                                                  M1

125

=  58

                                         125                                                                          A1

  8

  1. Old price/pen = 440

x

New price/pen = 494                                                                 B1Öboth expressions

x + 3

440494   = 1.50

x      x + 3                                                                               M1 Ö expression

440(x + 3) – 494x = 1.5x2 + 4.5x                                                M1Ö x-multiplication

x2 + 39x – 880 = 0                                                                     A1 Ö solvable quad. Eqn

x2 + 55x – 16x – 880 = 0                                                 M1 Ö factors or equivalent

(x – 16) (x + 55) = 0

x = -55

or x = 16                                                                                   A1 Ö both values

\ x = 16

difference in purchase = 19 X 1.50                                                        M1

= Shs.28.50                                                           A1

  8

  1. (a) OP = a + 1/4 (b – a) M1

= 3/4 a + 1/4 b                                                                            A1

(b)  PQ = PO + OQ

= –3/4 a – 1/4 b + 1/4 (a – b)                                                          M1

= –1/2 a – 1/2 b                                                                           A1

(c)  QN = QO + ON

= 1/4 (b – a) + 5/3 b                                                              M1

= 23/12 b – 1/4 a                                                                    A1

(d)  PN = PB + BN

= 3/4 (b – a) + 2/3 b                                                               M1

= 17/12 b – 3/4 a                                                                     A1

  8

  1. (a) Volume in 2 days = 22 x 3.5 x 3.5 x 150 x 20 x 3600 M1 Ö area of x-section

7       2        2           1,000,000                                 M1 Ö volume in cm3

= 103.95 m3                                                                  M1 Ö volume in m3

(b)  22 X r2 x 8 = 103.95 x 15   x 7                                                               M1

7                               2

 

r2 = 103.95 x 15 x 7                                                                   M1

                                  2 x 2 2x 8

= 31.01                                                                                     M1

r = 5.568 m                                                                               A1

  8

  1. (a) Ration of needs for A:B = 5:8

A’s share = 5/13 x 16.9 + 1/2 x 13.5                                                          M1

= 13.25 Million                                                                         A1

B’s share = (13.5 + 16.9) – 13.25                                                                        M1

= 13.25                                                                                     M1

  • A’s share 5/13 x 16.9 + 39/50 x 13.5

6.5 + 10.53

= 17.03 m                                                                                 A1

B’s share = 30.4 – 17.03                                                                         M1

= 13.37 Million                                                                         A1

  8

  1. Log V = n Log E = log k
Log V -0.46 -0.13 -0.14 -0.01 0.05
Log E -0.35 -0.21 -0.05 0.07 0.13

B1Ö log V all points

B1Ö log E all points

S1 Ö scale

P1Ö plotting

Log V = n log E + log K                                    L1 Ö line

                                                Log K = 0.08

K = 1.2 ± 0.01                                                  B1 Ö K

N = 0.06/0.06                                                        B1 Ö n

= 1 ± 0.1

\ v = 1.2E                                                       B1Ö v

when E = 0.75, V = 0.9 ± 0.1                            8

  1. (a) T 3 PQR ® PIQIRI

4    PI (0,5), QI (2,2) RI (1,0)

PI QI RI       PII  QII  RII

(b)  4  3    0   2   1   =   15    14   4                                                              M1 Ö

1  2     5   2   0        10     6    1                                                             A1 Ö

 

PII (15,10), QII (14,6), RII (4,1)                                                               B1Ö

(c)  Area s.f = det M

= 5

 

area of PII QII RII = 5 (area PIQIRI)

= 5 X 3.5                                                          M1Ö

= 16.5 cm2                                                        A1

  8

KCSE REVISION MATHEMATICS (QUESTIONS & ANSWERS)

MATHEMATICS I

PART I

SECTION I (50 MARKS)

  1. Evaluate without mathematical tables leaving your answer in standard form

0.01712 X 3

855 X 0.531                                                                                                                  (2 Mks)

  1. Six men take 14 days working 8 hours a day to pack 2240 parcels. How many more men working

5 hours a day will be required to pack 2500 parcels in 2 days                                                      (3 Mks)

 

  1. M                                  In quadrilateral OABC, OA = 4i – 3j. OC = 2i + 7j

AB = 3OC. cm: mB = 2:3. Find in terms of  i and j

C                                                           vector Om                                           (3 Mks)

 

 

 

 

 

O                                                A

 

  1. By matrix method, solve the equations

5x + 5y = 1

4y + 3x = 5                                                                                                                         (3 Mks)

 

 

  1. In the given circle centre O, ÐABC = 1260.

Calculate ÐOAC                                           (3 Mks)

 

A                                     C

 

 

 

B

 

  1. Solve the equation

2(3x – 1)2 9 (3x – 1) + 7 = 0                                                                                               (4 Mks)

  1. Maina, Kamau and Omondi share Shs.180 such that for every one shilling Maina gets, Kamau gets 50

Cts and for every two shillings Kamau gets, Omondi gets three shillings. By how much does Maina’s

share exceed Omondi’s                                                                                                         (3 Mks)

  1. Expand (2 + 1/2x)6 to the third term. Use your expression to evaluate 2.46 correct to 3 s.f (3 Mks)
  2. The probability of failing an examination is 0.35 at any attempt. Find the probability that

(i)   You will fail in two attempts                                                                                  (1 Mk)

(ii)   In three attempts, you will at least fail once                                                                       (3 Mks)

  1. Line y = mx + c makes an angle of 1350 with the x axis and cuts the y axis at y = 5. Calculate the

equation of the line                                                                                                             (2 Mks)

  1. During a rainfall of 25mm, how many litres collect on 2 hectares? (3 Mks)
  2. Solve the equation a 3a – 7 = a – 2 (3 Mks)

3       5          6

  1. The sum of the first 13 terms of an arithmetic progression is 13 and the sum of the first 5 terms is

–25. Find the sum of the first 21 terms                                                                                (5 Mks)

  1. The curved surface of a core is made from the shaded sector on the circle. Calculate the height of

the cone.                                                                                                                            (4 Mks)

 

 

 

 

 

O

20cm      1250                   20 cm

 

 

 

 

 

 

  1. Simplify (wx – xy – wz + yz) (w + z) (3 Mks)

z2 – w2

  1. The bearing of Q from P is North and they are 4 km apart. R is on a bearing of 030 from P and on

a bearing of 055 from Q. Calculate the distance between P and R.                                        (3 Mks)

 

SECTION II (50 MARKS)

  1. In the given circle centre O, ÐQTP = 460, ÐRQT = 740 and ÐURT = 390

 

 

U                                                   T                                P

 

 

Q

S          390

      Calculate                                                                                    R

(a)  ÐRST                                                        (1 Mk)

(b)  ÐSUT                                                       (3 Mks)

(c)  Obtuse angle ROT                                    (2 Mks)

(d)  ÐPST                                                        (2 Mks)

  1. The exchange rate on March 17th 2000, was as follows: –

1 US$ = Kshs.74.75

1 French Franc (Fr) = Kshs.11.04

      A Kenyan tourist had Kshs.350,000 and decided to proceed to America

(a)  How much in dollars did he receive from his Kshs.350,000 in 4 s.f?                               (2 Mks)

(b) The tourist spend  ¼  of the amount in America and proceeded to France where he spend Fr

16,200. Calculate his balance in French Francs to 4 s.f                                                   (3 Mks)

(c) When he flies back to Kenya, the exchange rate for 1 Fr = Kshs.12.80. How much more in

Kshs. does he receive for his balance than he would have got the day he left?                 (3 Mks)

  1. On the provided grid, draw the graph of y = 5 + 2x – 3x2 in the domain -2 £ x £ 3               (4 Mks)

(a) Draw a line through points (0,2) and (1,0) and extend it to intersect with curve y = 5 + 2x – 3 x 2

read the values of x where the curve intersects with the line                                         (2 Mks)

(b)  Find the equation whose solution is the values of x in (a) above                                     (2 Mks)

  1. (a) Using a ruler and compass only, construct triangle PQR in which PQ = 3.5 cm, QR = 7 cm

and angle PQR = 300                                                                                                     (2 Mks)

(b)  Construct a circle passing through points P, Q and R                                                     (2 Mks)

(c)  Calculate the difference between area of the circle formed and triangle PQR                   (4 Mks)

  1. The given Region below (unshaded R) is defined by a set of inequalities. Determine the inequalities (8 Mks)

Y

 

4

 

 

 

2                   R              (3,3)

  

 

X

-3                           5

 

 

 

 

 

 

 

  1. The table below shows the mass of 60 women working in hotels

 

Mass (Kg) 60 – 64 65 – 69 70 – 74 75 – 79 80 – 84 85 – 89
No. of women 8 14 18 15 3 2

 

(a)   State (i)   The modal class                                                                                             (1 Mk)

(ii)  The median class                                                                                           (1 Mk)

(b)   Estimate the mean mark                                                                                                           (4 Mks)

(c)   Draw a histogram for the data                                                                                       (2 Mks)

  1. XY, YZ and XZ are tangents to the circle centre O

at points A, B, C respectively. XY = 10 cm,

YZ = 8 cm and XZ = 12 cm.                                                                                         (2 MKS)

Z

 

 

C

 

 

 

 

..                    B

X

 

A                    Y

 

 

(a)  Calculate, length XA                                                                                                    (2 Mks)

(b)  The shaded area                                                                                                                  (6 Mks)

  1. Maina bought a car at Kshs.650,000. The value depreciated annually at 15%

(a)  After how long to the nearest 1 decimal place will the value of the car be Kshs.130,000        (4 Mks)

(b)  Calculate the rate of depreciation to the nearest one decimal place which would make the value of

the  car be half of its original value in 5 years                                                              (4 Mks)

 

MATHEMATICS I

PART II

SECTION 1 (50 MARKS)

 

 

  1. Simplify 32a10   -2/5 ÷  9b4      11/2

b15             4a6                                                                                                 (2 Mks)

 

  1. Use logarithm tables to evaluate

Ö0.375 cos 75

tan 85.6                                                                                                       (4 Mks)

  1. The marked price of a shirt is Shs.600. If the shopkeeper gives a discount of 20% off the marked price, he makes a loss of 4%. What was the cost of the shirt? (3 Mks)
  2. The surface area (A) of a closed cylinder is given by A = 2pr2 + 2prh where r is radius and h is height of the cylinder. Make r the subject. (4 mks)
  3. In the circle centre O, chords AB and CD intersect at X. XD = 5 cm

      XC = 1/4 r where r is radius. AX:XO = 1:2 Calculate radius of the circle.                             (3 mks)

 

A             5cm       D

 

 

C                O

 

B

 

 

  1. Simplify     2       –        1                                                                                             (3 mks)

5 – 2Ö3     5 + 2Ö3

 

 

  1. P is partly constant and partly varies as q2. When q = 2, P = 6 and when q = 3, P = 16. Find q when P = 64                               (4 mks)
  2. The figure on the side is a tent of uniform cross-section A                           F

ABC. AC = 8m, BC = 8m, BD = 10m   and (ACB = 1200.                  8m

If a scout needs 2.5 m3 of air, how many scouts can fit                      120o C                     E

in the tent.                                                                                                            8m                   (4 mks)

B                              D

10m

  1. The length of a rectangle is given as 8 cm and its width given as 5 cm. Calculate its maximum % error in its perimeter                (3 mks)
  2. ABCD is a rectangle with AB = 6 cm, BC = 4 cm AE = DH = 4 cm BF = CG = 12 cm. Draw a

labelled net of the figure and show the dimensions of the net

  1. Expand (1 + 2x)6 to the 3rd term hence evaluate (1.04)6 (4 mks)
  2. The eye of a scout is 1.5m above a horizontal ground. He observes the top of a flag post at an

angle of elevation of 200. After walking 10m towards the bottom of the flag post, the top is observed at angle of elevation of 400. Calculate the height of the flag post                                  (4 mks)

  1. A bottle of juice contains 405ml while a similar one contains 960ml. If the base area of the

larger Container is 120 cm2. Calculate base area of the smaller container.                             (3 mks)

  1. It takes a 900m long train 2 minutes to completely overtake an 1100m long train travelling at

30km per hour. Calculate the speed of the overtaking train                                                  (3 mks)

  1. Okoth traveled 22 km in 23/4 hours. Part of the journey was at 16 km/h and the rest at 5 km/h.

Determine the distance at the faster speed                                                                           (3 mks)

  1. P and Q are points on AB such that AP:PB = 2:7 and AQ:QB = 5:4 If AB = 12 cm, find PQ

(2 Mks)

SECTION B (50 MARKS)

 

  1. The income tax in 1995 was collected as follows:

      Income in Kshs. p.a                rate of tax %

1 – 39,600                               10

39,601 – 79,200                               15

79,201 – 118,800                             25

118,801 – 158,400                           35

158,401 – 198,000                           45

      Mutua earns a salary of Kshs.8,000. He is housed by the employer and therefore 15% is added to his salary to arrive at its taxable income. He gets a tax relief of Shs.400 and pay Shs.130 service charge. Calculate his net income                                                                                    (8 Mks)

  1. The probability Kioko solves correctly the first sum in a quiz is 2/5 Solving the second correct

is 3/5 if the first is correct and it is 4/5 if the first was wrong. The chance of the third correct is

2/5 if the second was correct and it is 1/5 if the second was wrong. Find the probability that

(a)  All the three are correct                                                                                    (2 Mks)

(b)  Two out of three are correct                                                                              (3 Mks)

(c)  At least two are correct                                                                                     (3 Mks)

  1. A businessman bought pens at Shs.440. The following day he bought 3 pens at Shs.54. This

purchase reduced his average cost per pen by Sh.1.50. Calculate the number of pens bought earlier and the difference in cost of the total purchase at the two prices                                      (8 mks)

 

 

 

 

  1. In D OAB, OA = a, OB = b

OPAQ is a parallelogram.

      ON:NB = 5:-2, AP:PB = 1:3

Determine in terms of a and b vectors

(a)  OP                                                                                                                   (2 Mks)

(b)  PQ                                                                                                                   (2 Mks)

(c)  QN                                                                                                                   (2 Mks)

(d)  PN                                                                                                                   (2 mks)

 

  1. A cylindrical tank connected to a cylindrical pipe of diameter 3.5cm has water flowing at 150

cm per second. If the water flows for 10 hours a day

(a)  Calculate the volume in M3 added in 2 days                                                                   (4 ms)

(b) If the tank has a height of 8 m and it takes 15 days to fill the tank, calculate the base radius

of the tank                                                                                                                     (4 mks)

  1. A joint harambee was held for two schools that share a sponsor. School A needed Shs.15 million while

School B needed 24 million to complete their projects. The sponsor raised Shs.16.9 million while other

guest raised Shs.13.5 million.

(a) If it was decided that the sponsor’s money be shared according to the needs of the school

with the rest equally, how much does each school get                                               (5 mks)

(b) If the sponsor’s money was shared according to the schools needs while the rest was in the  ratio of

students, how much does each school get if school A has 780 students and school B 220

students                                                                                                                        (3 mks)

  1. Voltage V and resistance E of an electric current are said to be related by a law of the form

V = KEn where k and n are constants. The table below shows values of V and E

      V

0.35 0.49 0.72 0.98 1.11
E 0.45 0.61 0.89 1.17 1.35

      By drawing a suitable linear graph, determine values of k and n hence V when E = 0.75(8mks)

  1. The vertices of triangle P,Q,R are P(-3,1), Q (-1,-2), R (-2,-4)

(a)  Draw triangle PQR and its image PIQIRI of PQR under translation T =    3    on the provided grid                                                                                                                4                        (2 Mks)

(b)  Under transformation matrix m =    4  3  , PIQIRI is mapped on to PIIQIIRII. Find the

co-ordinates of PIIQIIRII and plot it   1  2    on the given grid                                          (4 Mks)

(c)  If area of D PIQIRI is 3.5 cm2, find area of the images PIIQIIRII                                        (2 Mks)

 

MATHEMATICS I

PART 1

MARKING SCHEME

 

  1. 171 X 171 X 3 X 10-5 M1

                                  855 X 531

= 2 X 10-6                                                                                     A1

  2

 

  1. No. of men = 6 X 14 X 8 X 2500 M1

                                  2 X 5 X 2240

= 75                                                                            A1

Extra men        = 75 – 6 = 69                                                                B1

 3

  1. OM = 2i + 7j + 2/5 (4i – 3j + 6i + 21j – 2i – 7j) M1

= 2i + 7j + 2/5 (8i + 11j)                                                           M1

= 26 i + 57 j

5       5                                                                               A1

  3

 

 

 

 

 

  1. 2 5       x         =      1

3  4       y                   5                                                                                    M1

 

x          -1/7   5/7       1

y    =     3/7   -2/7      5                                                                M1

 

x    =  3

y       -1

 

x, 3, y = -1                                                                                A1

 3

 

  1. Reflex ÐAOC = 126 x 2 = 2520 B1

Obtuse ÐAOC = 360 – 252 = 1080                                                               B1

= 1/2 (180 – 108)0

= 360                                                                                B1

 3

  1. 18x2 – 39x + 18 = 0

6x2 – 13x + 6 = 0                                                                                         B1Ö equation

6x2 – 9x – 4x + 6 = 0

3x(2x – 3) (3x – 2) = 0                                                                                  M1

x = 2/3  or                                                                                  A1

x =1 ½                                                                                      B1

4

 

  1. M :  K  :  O  =  4 : 2 : 3                                                                              B1Ö ratio

      Maina’s  = 4/9 X 180

= 80/-                                                                                     B1Ö Omondi’s

      Omondi’s = 60/-                                                                                          and Maina’s

      Difference = Shs.20/-                                                                                   B1 difference

3

  1. (2 + 1/2x)6 = 26 + 6(25) (1/2x + 15 (24) (1/2 x)2 M1

= 64 + 96x + 60x2                                                                     A1

2.46      = (2 + 1/2 (0.8))6

= 64 + 96 (0.8) + 60 (0.64)                                                        M1

= 179.2

@179 to 3 s.f                                                                             A1

 4

  1. P (FF) = 7/20 X 7/20

= 49/100                                                                                                            B1

P (at least one fail) = 1 – P (FI FI FI)

= 1- 13/20   3                                                      M1

= 1 – 2197                                                       M1

8000

= 5803

                                                     8000                                                                        A1

 4

 

  1. grad = term 135

= -1                                                                                                            B1

y  = mx + c

y  = -x + 5                                                                                          B1

 2

 

  1. Volume = 2 x 10,000 x 10,000 x 25 M1Ö x section area

1000                 10                                                            M1Ö conv. to litres

= 500,000 Lts                                                               A1

 3

 

  1. 10a – 6(3a – 7) = 5(a -2) M1

10a – 18a + 42 = 5a – 10

– 13a    = -52                                                                                        M1

a        = 4                                                                                           A1

 3

  1. 2a + 12d = 2

2a + 4d = -10                                                                                              M1

8d   = 12

d   = 11/2                                                                                                   A1

a   = -8                                                                                                     B1

S21  = 21/2 (-16 + 20 X 3/2)                                                                           M1

= 147                                                                                             A1

 5

 

  1. 2 p r = 120 x p x 40 M1

360

r = 6.667 cm                                                                                         A1

h =  Ö 400 – 44.44                                                                                 M1

= 18.86 cm                                                                                          A1

 4

  1. = (w (x – z) – y (x – z)) (w + z) M1Ö factor

(z – w) (z + w)

= (w – y) (x – z) (w + z)                                                             M1Ö grouping

(z – w) (z + w)

= (w – y) (x – z)

z – w                                                                                         A1

 3

 

R

250                                                                                B1Ö sketch

  1. 550

Q  125                                            PR = 4 sin 125                                              M1

Sin 25

A1

30

P                                                                                                          3

  1. (a) <RST = 1800 – 740  = 1060                                                              B1

(b) < RTQ = 900– 740           = 160                                                                B1

< PTR = 460 + 160         = 620                                                                B1

< SUT = 620 – 390         = 230                                                                B1

(c)  Reflex ÐRQT = 180 – 2 x 16

= 180 – 32 = 1480                                                                      B1

Obtuse ROT = 360 – 148 = 2120                                                                   B1

(d)  < PTS = 46 + 180 – 129 = 970                                                                      B1

< PST = 180 – (97 + 39) = 440                                                                      B1

8

(a)  Kshs.350,000 = $ 350,000                                                                           M1

74.75

= $ 4682                                                                                   A1

(b) Balance             = 3/4 x 4682

= $ 3511.5                                                                          B1

$3511.5      = Fr 3511.5 x 74.75                                                                   M1

11.04

= Fr 23780                                                                    A1

Expenditure      = Fr 16 200

Balance            = Fr 7580

(c) Value on arrival = Kshs.7580 X 12.80

= Kshs.97,024

Value on departure        = Kshs.7580 X 11.04                                                              B1 bothÖ

= Kshs.83 683.2

Difference                      = Kshs.97,024 – 83683.2                                         M1

= Kshs.13,340.80                                                   A1

 8

X -2 -1 0 1 2 3
Y -11 0 5 4 -3 -16

B1Övalues

 

y

S1Ö scale

8 —                                                                P1Ö plotting

6 —                                                                C1 Ö curve

4 —

2

 

-2 —    1            2          3                                x

-4 —

-6 —

-8 —                                                        y=2x=2

-10 —

-12 —

-14 —                                                                            x   =-0.53 + 0.1  BI

-16 —                                                                           Nx = 1.87+ 0.1

 

y = 5+2x-3x2 =2-2x                  MI for equation

3x2-4x-4x-3=0                   AI equation

8

x     = -0.53 ± 0.1                                                                     B1

mx   = 1.87 ± 0.1

 

 

y = 5 + 2x – 3x2 = 2 – 2x                               M1 Ö for equation

\ 3×2 – 4x – 3 = 0                                                         MA1 Ö equation

 8

 

 

 

 

 

 

 

 

 

20.

 

 

 

 

B1 Ö 300

 

R                                                                                                      B1 Ö 2 ^ PQ, QR

B1 Ö 2 ^ bisectors

B1 Ö circle

 

 

9                         Q

 

 

Radius = 4.2 ± 0.1                                                                                 B1Ö radius

Area of circle = 22/7 x 4.22

= 55.44 ± 3 cm2

Area of D PQR = 1/2 x 3.5 x 7.5 sin 30                                                    M1Ö D and circle

= 6.5625 cm2

Difference               = 55.44 – 6.5625                                                                 M1Ö sub

= 48.88 cm2                                                                       A1

 8

  1. Line (i) y/2 + x/5 = 1

5y + 2x = 10                                                                             B1Öequation

5y + 2x = 10                                                                             B1Ö inequality

      Line (ii)      y/4 + x/-3 = 1

3y = 4x + 12                                                                 B1Ö equation

3y < 4x + 12 or 3y – 4x < 12                                          B1Ö inequality

      Line (iii)     grad = -1/3 y inter = 4

3y + x = 12 or 3y = -x + 12                                            B1Ö equation

3y + x < 12                                                       B1Ö inequality

      Line (iv)      y – 3 = -3

x – 3      2

2y + 3x = 15                                                                 B1Ö equation

\         2y + 3x £ 15                                                                 B1Ö equation

  8

CLASS

F x Fx Cf
60 – 64

65 – 69

70 – 79

75 – 79

80 – 84

85 – 89

8

14

18

15

3

2

62

67

72

77

82

87

 496

938

1296

1155

246

174

8

28

40

55

58

60

  Sf = 60       Sfx 3809  

 

B1Ö x column

B1Ö f column

 

 

 

 

(a)  (i)  Modal class   = 70 – 74                                                                    B1Ö model class

(ii) Median class = 70 – 74                                                                    B1Ö median

 

(b)              Mean =  3809

                                         60                                                                           M1

= 63.48                                                                         A1

 

S1Ö scale

B1 Ö blocks

59.5 – 64.5

64.5 – 69.5 e.t.c.

 8

(c)

 

Histogram

 

 

 

20  —

 

 

15  —

 

 

10 – –

 

 

5  —

 

 

 

 

55    60        65        70        75        80        85        90

 

  1. (a) XA = a, YA = 10 – a, YB = 10 – a, CZ = 10 – a = ZB

YZ = 10 – a + 12 – a = 8                                                                         M1

2a = 14

a = 7 cm                                                                                 A1

Cos X = 100 + 144 – 64

240                                                                               M1Ö any angle of the D

= 0.75

X = 41.410

     1/2 X = 20.700                                                                                     A1Ö 1/2 of the angle

 

r = OA = 7tan 20.7                                                                                   B1 Ö radius

= 2.645 cm

Shaded area = 1/2 X 10 X 12 sin 41.41 – 22/7 X 2.6452                                    M1 Ö D & circle

= 39.69 – 21.99

= 17.7 cm2                                                                    A1Ö

 8

 

 

 

 

 

 

 

  1. (a) 650,000 (0.85)n = 130,000                                                         M1Ö formula

1.15n    = 0.2

n    = log 0.2                                                         M1Ö

log 0.85

1.3010

1.9294

= – 0.6990                                                        M1

– 0.0706

= 9.9 years                                                       A1

(b)  650,000 (1 – r/100) 5 = 325,000                                                                 M1

(1 – r/100) 5 = 0.5

1 – r/100     = 0.5 1/5                                                                   M1

= 0.8706

r/100 = 0.1294                                                                 A1

r    = 12.9 %                                                               B1

 8

MATHEMATICS I

PART II

MARKING SCHEME

 

SECTION I (50 MARKS)

 

 

  1. = b15      2/5    X    4a6   3/2

32a10                9b4                                                                   M1Ö reciprocal

 

 

=          2a5                                                                                           A1

27                                                                                            2

 

      No.             Log.                

0.375          1.5740 +

cos 75         1.4130

2.9870 _

tan 85.6      1.1138

3.8732 =  4 + 1.8732

2                  2

2.9366

0.0864

 

  1. S. Price =  80   X 600

100

= Shs.480                                                                         B1

Cost Price = x

96x       = 480                                                                            M1

100

x  =   Shs.500                                                                      A1

 3

  1. r2 + hr = A/2p                                                 M1

r2 + hr + (h/2)2 = A/2A + h/4                                                                            M1

(r + h/2)2 =  Ö 2A + h2

4p                                                                                        M1

r    = -h/2 ±   Ö2A + h2                                                                            A1

4p                                                                               4

 

  1. (12/3r) (1/3 r) = (1/4 r) (5) M1

4r2 – qr = 0

r(4r – q) = 0                                                                                                 M1

r = 0

or   r  = 2.25                                                                                         A1

 3

 

  1. = 2 (5 + 2Ö3) – 1 (5 – 2Ö3) M1

(5 – 2Ö3) (5 + 2Ö3)

= 10 + 4Ö3 – 5 +2Ö3                                                                                                M1

13

= 5 + 6Ö3                                                                                                    A1

13                                                                                                      3

  1. P = Kq2 + c

6 = 4k + c

16 = 9k + c                                                                                     M1 Ö subtraction

5k = 10

k = 2

c = -2                                                                                                         A1 Ö k and c

      P = 64     2q2 = 66

q  = Ö33

= ± 5.745                                                                                A1

 4

  1. Volume = 1/2 X 8 X 8 sin 120 X 10 M1 Ö area of x-section

      No. of scouts = 32 sin 60 X 10                                                         M1 Ö volume

2.5                                                                               M1

= 110.8

= 110                                                                                        A1

 3

 

  1. Max. error = 2(8.5 + 5.5) – 2(7.5 + 4.5)

2

= 2                                                                                           B1

% error = 2/26 X 100                                                                                 M1

= 7.692%                                                                                  A1

G                                                                          3

 

 

  1. B1 Ö net

 

H             D                             G                       H                                  B1 Ö dimen. FE must be 10cm

 

4cm                                                                                  4cm

 

B1 Ö labelling

E 4cm  A                        12cm      F     10cm    E                                      3

4cm                12cm

E

F

  1. (1 + 2x)6 = 1 + 6(2x) + 15 (2x)2 M1

= 1 + 12x + 60x2                                                                       A1

(1.04)6 = (1 + 2(0.02))6

= 1 + 12 (0.02) + 60(0.02)2                                                        M1

= 1.264                                                                                     A1

 4

 

 

 

 

  1. BT = 10 cm                              B1

CT = 10 sin 40                          M1

= 6.428 m                                 A1

A1 10cm    B                  C                                h = 6.428 + 1.5

1-5                                  = 7.928                                  B1

  4

 

 

  1. A.S.F = 405 2/3  =  27  2/3   =   9                                                                  B1

960           64            10

smaller area = 29  X 120                                                                        M1

164

= 67.5 cm2                                                                                A1

  3

 

  1. Relative speed = (x – 30)km/h B1

2 km     =          2 hrs

(x – 30)km/h      60                                                                             M1

2x – 60 = 120

x = 90 km/h                                                                              A1

  3

  1. 16 Km/h 5 Km/hr

x Km                          (22 – x) Km

x + 22 – x   = 11

16        5           4                                                                                    M1

5x + 352 – 16x = 220                                                                 M1Ö x-multiplication

11x  = 132

x  = 12 km                                                                  A1

  3

 

  1. AP = 2/9 x 12 = 22/3 cm B1 Ö both AP & AQ

      AQ = 5/9 x 12 = 62/3 cm

\ PQ = 62/3 – 22/3 = 4 cm                                                                            B1 Ö C.A.O

  2

 

  1. Taxable income = 115/100 x 8000 M1

= Shs.9200 p. m

= Shs.110,400 p.a                                                                   A1

Tax dues = 10/100 x 39600 + 15/100 x 39600 + 25/100 x 31200                 M1 Ö first 2 slabs

= 3960 + 5940 + 7800                                                               M1 Ö last slab

= Shs.17,700 p.a

= 1475 p.m                                                                               A1

net tax = 1475 – 400

= Shs.1075                                                                             B1 Ö net tax

Total deductions = 1075 + 130

= Shs.1205

net income = 8000 – 1205                                                                      M1

= Shs.6795                                                                   A1

  8

 

 

 

 

 

(a)  P (all correct) = 2/3 x 3/5 x 2/5                                                                  M1

= 12/125                                                              A1

(b)  P (2 correct) = 2/5 x 3/5 x 3/5 + 2/5 x 2/5 X 1/5 + 3/5 x 4/5 x 2/5

                                                                                                                        M1

= 18/125 + 4/125 + 24/125                                         M1

= 46/125                                                              A1

(c) P (at least 2 correct)

= P(2 correct or 3 correct)

= 46/125 + 12/125                                                                           M1

= 46 + 12                                                                                  M1

125

=  58

                                         125                                                                          A1

  8

  1. Old price/pen = 440

x

New price/pen = 494                                                                 B1Öboth expressions

x + 3

440494   = 1.50

x      x + 3                                                                               M1 Ö expression

440(x + 3) – 494x = 1.5x2 + 4.5x                                                M1Ö x-multiplication

x2 + 39x – 880 = 0                                                                     A1 Ö solvable quad. Eqn

x2 + 55x – 16x – 880 = 0                                                 M1 Ö factors or equivalent

(x – 16) (x + 55) = 0

x = -55

or x = 16                                                                                   A1 Ö both values

\ x = 16

difference in purchase = 19 X 1.50                                                        M1

= Shs.28.50                                                           A1

  8

  1. (a) OP = a + 1/4 (b – a) M1

= 3/4 a + 1/4 b                                                                            A1

(b)  PQ = PO + OQ

= –3/4 a – 1/4 b + 1/4 (a – b)                                                          M1

= –1/2 a – 1/2 b                                                                           A1

(c)  QN = QO + ON

= 1/4 (b – a) + 5/3 b                                                              M1

= 23/12 b – 1/4 a                                                                    A1

(d)  PN = PB + BN

= 3/4 (b – a) + 2/3 b                                                               M1

= 17/12 b – 3/4 a                                                                     A1

  8

  1. (a) Volume in 2 days = 22 x 3.5 x 3.5 x 150 x 20 x 3600 M1 Ö area of x-section

7       2        2           1,000,000                                 M1 Ö volume in cm3

= 103.95 m3                                                                  M1 Ö volume in m3

(b)  22 X r2 x 8 = 103.95 x 15   x 7                                                               M1

7                               2

 

r2 = 103.95 x 15 x 7                                                                   M1

                                  2 x 2 2x 8

= 31.01                                                                                     M1

r = 5.568 m                                                                               A1

  8

  1. (a) Ration of needs for A:B = 5:8

A’s share = 5/13 x 16.9 + 1/2 x 13.5                                                          M1

= 13.25 Million                                                                         A1

B’s share = (13.5 + 16.9) – 13.25                                                                        M1

= 13.25                                                                                     M1

  • A’s share 5/13 x 16.9 + 39/50 x 13.5

6.5 + 10.53

= 17.03 m                                                                                 A1

B’s share = 30.4 – 17.03                                                                         M1

= 13.37 Million                                                                         A1

  8

  1. Log V = n Log E = log k
Log V -0.46 -0.13 -0.14 -0.01 0.05
Log E -0.35 -0.21 -0.05 0.07 0.13

B1Ö log V all points

B1Ö log E all points

S1 Ö scale

P1Ö plotting

Log V = n log E + log K                                    L1 Ö line

                                                Log K = 0.08

K = 1.2 ± 0.01                                                  B1 Ö K

N = 0.06/0.06                                                        B1 Ö n

= 1 ± 0.1

\ v = 1.2E                                                       B1Ö v

when E = 0.75, V = 0.9 ± 0.1                            8

  1. (a) T 3 PQR ® PIQIRI

4    PI (0,5), QI (2,2) RI (1,0)

PI QI RI       PII  QII  RII

(b)  4  3    0   2   1   =   15    14   4                                                              M1 Ö

1  2     5   2   0        10     6    1                                                             A1 Ö

 

PII (15,10), QII (14,6), RII (4,1)                                                               B1Ö

(c)  Area s.f = det M

= 5

 

area of PII QII RII = 5 (area PIQIRI)

= 5 X 3.5                                                          M1Ö

= 16.5 cm2                                                        A1

  8

 

 

 

MATHEMATICS 2

PART I

 

SECTION A: 

 

  1. Use logarithm tables to evaluate                      (4 mks)

 

0.0368 x 43.92

361.8

 

  1. Solve for x by completing the square                           (3mks)

2x2  – 5x + 1 = 0

 

  1. Shs. 6000 is deposited at compound interest rate of 13%. The same amount is deposited at 15% simple interest. Find which amount is more and by how much after 2 years in the bank       (3mks)

 

  1. The cost of 3 plates and 4 cups is Shs. 380. 4 plates and 5 cups cost Shs. 110 more than this. Find the cost of each item.                                                                                                        (3mks)

 

  1. A glass of juice of 200 ml content is such that the ratio of undiluted juice to water is 1: 7 Find how many diluted glasses can be made from a container with 3 litres undiluted juice       (3mks)

 

  1. Find the value of θ within θ  < θ < 360if  Cos (2 θ + 120) =  γ3                                                     (3mks)

2

 

  1. A quantity P varies inversely as Q2 Given that P = 4 When Q = 2.  , write the equation joining P and  Q

hence find P when Q = 4                                         a                                                                      (3mks)

 

  1. A rectangle measures 3.6 cm by 2.8 cm. Find the percentage error in calculating its perimeter.                                                                                                                                                 (3mks)

 

  1. Evaluate:          11/6   x  ¾  –  11/12                                                                                              (3mks)

½  of 5/6

 

  1. A metal rod, cylindrical in shape has a radius of 4 cm and length of 14 cm. It is melted down and recast into small cubes of 2 cm length. Find how many such cubes are obtained          ( 3mks)

 

  1. A regular octagon has sides of 8 cm. Calculate its area to 3 s.f.             (4mks)

 

  1. Find the values of x and  y if                                                                                                       ( 2 mks)

3          x          1   =     2

2          1          -1         y

 

  1. An equation of a circle is given by x2 + y2 – 6x + 8y – 11 = 0       (3mks)

Find its centre and radius

 

 

 

 

 

 

  1. In the figure given AB is parallel to DE. Find the value of x and y

 

 

 

 

 

 

 

 

  1. A line pass through A (4,3) and B(8,13). Find                                                  (6 mks)

(i)  Gradient of the line

(ii)  The magnitude of AB

(iii) The equation of the perpendicular bisector of AB.

 

  1. A train is moving towards a town with a velocity of 10 m/s. It gains speed and the velocity becomes 34 m/s after 10 minutes . Find its acceleration (2mks)

 

 

SECTION B:

 

  1. Construct without using a protractor the triangle ABC so that BC=10cm, angle ABC = 600 and

BCA = 450

  1. On the diagram , measure length of AC
  2. Draw the circumference of triangle ABC
  3. Construct the locus of a set of points which are equidistant from A and B.
  4. Hence mark a point P such that APB = 450 and AP = PB
  5. Mark a point Q such that angle AQB = 450 and AB = AQ

 

  1. (a) A quadrilateral ABCD has vertices A(0,2) , B(4,0) , C(6,4) and D(2,3). This is given a

transformation by the matrix   -2  0  to obtain its image AI B I CI DI. under a second transformation

0 – 2

which has a rotation centre (0,0) through –900 , the image AII  BII  CII  DII  of AI  BI  CI  DI  is

obtained.    Plot the three figures on a cartesian plane                                                         (6mks)

(b)  Find  the  matrix of  transformation  that  maps  the  triangle  ABC  where A (2,2)   B (3,4)   C (5,2)

onto  A B C   where  A( 6,10)  B  (10,19 )  C ( 12, 13).                                                    ( 2mks)

 

 

 

 

19.

 

 

 

 

 

 

In the triangle OAB, OA = 3a , OB = 4b and OC = 5/3 OA.  M divides OB in the ratio 5:3

  1. Express AB and MC in terms of a and b
  2. By writing MN in two ways, find the ratio in which N divides
  3. AB
  4. MC

 

 

 

 

 

 

  1. In the figure below, SP = 13.2 cm, PQ = 12 cm, angle PSR = 80O and angle PQR = 900. S and Q are the centres       (8mks)

 

Calculate:

The area of the intersection of the two circles

The area of the quadrilateral  S P Q R

The area of the shaded region

 

 

 

 

 

 

 

 

 

 

 

  1. In an experiment the two quantities x and y were observed and results tabled as below
X 0 4 8 12 16 20
Y 1.0 0.64 0.5 0.42 0.34 0.28

 

  1. By  plotting  1/y  against x, confirm that y is related to x by an equation of the form

 

Y =      q

 

 

P + x

where p and q are constants.                                                                             (3mks)

 

(b)  Use your graph to determine p and q                                                                                   (3mks)

 

(c )  Estimate the value of   (i) y when x = 14

(ii) x when y = 0.46                                                             (2mks)

 

  1. A racing cyclist completes the uphill section of a mountain course of 75 km at an average speed of v km/hr. He then returns downhill along the same route at an average speed of (v + 20) km/hr. Given that the difference between the times is one hour, form and solve an equation in v.

Hence

  1. Find the times taken to complete the uphill and downhill sections of the course.
  2. Calculate the cyclists average speed over the 150km.

 

  1. In the diagram below, X is the point of intersection of the chords AC and BD of a circle. AX = 8 cm, XC = 4cm and XD = 6 cm
  2. Find the length of XB as a fraction
  3. Show that XAD is similar to XBC
  4. Given that the area of AXD = 6cm2, find the area of BXC
  5. Find the value of the ratio

Area of       AXB

Area of        DXC

 

 

 

 

 

 

 

  1. A town B is 55 km on a bearing of 0500. A third town C lies 75km due south of B. Given that D lies on a bearing of 2550 from C and 1700 from A, make an accurate scale drawing to show the positions of the four towns.                                                                                           (3mks)

(scale 1cm rep 10 km)

From this find,

(a) The distance of AD and DC in km                                                                     (2mks)

(b) The distance and bearing of B from D                                                               (2mks)

(c)  The bearing of  C from A                                                                                 (1mk)

 

MATHEMATICS 2

PART 1

MARKING SCHEME             (100MKS)

 

 

  1. No. Log

=   3.6502

0.3681              2.5660

0.3682              1.6427 +                                -4  =  1.6502      = 2.8251

0.2087              Logs                            2

361.8                2.5585              + – v   ans  (4)         6.6850 x 10 -2

3.6502                                         = 0.06685

 

  1. 2 x2 – 5x + 1 = 0

x2 5 x + ½ = 0

2

x25 x   = ½

2

x – 5x  +     5 2    =  ½   +     5    (m)

2         4                        4

 

= x –  5    = ½ +      25    =  17                    (3)

4                   16        16

 

= x – 5/4  =  17/16   =    1.0625

x – 5/4    ±  1.031

X1 = -1.031 = 1.25 = 0.2192

X2 = 1.031  + 1.25  = 1.281

 

  1. A1 = P(1 + R/100)2 = 6000  x  113/100 x 113/100 = Sh. 7661.40

 

A2 = P + PRT/100         =   6000 + 15 X 2 = 6000 + 1800

100

=   Shs. 7800

 

Amount by simple interest is more by Shs.  (7800 – 7661. 40)

Shs. 138.60

  1. Let a plate be p and a cup c.

3p + 4c = 380  x 5             15p + 20c  = 1900

4p + 5c  = 490  x 4       16p + 20c  = 1960 

-p      -60                (m)

 

 

 

 

 

p = Shs 60

 

3(60) + 4 c = 380

4c = 380 –180 = 2000                (3)

c=   Shs. 50

Plate = Shs. 60 ,            Cup = Shs. 50            (A both)

 

  1. Ratio of juice to water = 1          :           7

In 1 glass = 1/8 x 200 = Sh 25

3 litres = 300 ml (undiluted concentrate)           (3)

No. of glasses =v    3000  =  120 glasses

25

 

  1. Cos (2 θ + 120) = 3/2 = 0.866

Cos 30 , 330, 390, 690, 750 ….

            2 θ + 120                = 330

2 θ = 210          ,     = 1050                                                                                        (3)

2 θ = 390 – 120   = 2700          θ2 1350

2 θ =  690 – 120  = 5700  ,       θ3 2850       (for 4 ans)

θ4= 315o    ( for >2)

2 θ =  750 – 120   = 6300 ,

 

  1. P =          k                      4  =  K/4           (substitution)

Q2                         9

K = 4 X 4         =            16

9                           9

P =  16   v         when Q = 4

9Q2

 

P =         16        =   1/9              (A)                 (3)

9x4x4

 

  1. The perimeter = (3.6 + 2.8 ) x 2 = 12.8 cm

Max perimeter = (3.65 + 2.85) x 2 = 23 cm    Expressions

% error =   13 –12.8     x  100    m         =     0.2        x     100  (3)

12.8                                     12.8

= 1.5620%        (A)

 

  1.      1 1/6 x ¾  – 11/12   = (7/6 x ¾ )  -11/12         =  7/8 – 11/12   =   21-22  

½  of 5/6                       ½ of 5/6                        5/12              5/12

= -1/24    = -1  x 12    =  -1

5/12        24   5          10       (3)

 

  1. Volume of rod = П r2h = 22/7 x 4  x 14 = 704cm3                (m)

                    Volume of each cube = 2x2x2 = 8 cm3                         A

 

No. of cubes = 704 /8  = 88 cm3   A

 

 

 

 

 

 

 

 

 

  1. < AOB = 360 = 450

                          8

Tan 67.5 =  h

4

h = 4 x 2.414                A

=  9.650cm

Area of 1 triangle = ½ x 8 x 9.656 x 8 cm = 38.628 x 8   vm

Octagon area  =  38.628 x 8      m

=  309.0 cm2        (A)

 

  1. 3   2        -1             2

=

2              1          -1           y

 

3 – x = 2       (1)       x = 1                          (2)

2 –  1 = y                 y = 1  (A)

 

  1. x 2 + y2 – 6x + 8y – 11 = 0

x2 – 6x + (-3)2 + y2 + 8y + (4)2 = 11 + (-3)2 + (4)2         (completing the square)

(x – 3)2 + (y+4)2 = 11 + 9 + 16 = 36

(x – 3)2 + (y + 4)2 = 62                                                                                          

Centre is  (3, -4)

Radius       = 6 units           As                                            (3)

 

 

14.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figs A C B  and D C E are similar

AB       =          AC       =  and   AB       =          BC

                         DE                    DC                 DE                   CE

 

10    =  6 + x

3          6

= 10   =  15 + y,     m

3            y                                                    60 = 18 + 3x

10y  = 15 + 3y                                                   3x = 42

7y = 15                                                                x = 14

 

y = 15/7              (A)                                                                             (3)

A (4 , 3)           B(8,13)

 

  1. (i) gdt          = change in y    = 13-3 = 10     =  5

change in x       8-4       4          2

 

(ii)      Mag  AB  =  8     -4           4                                                    =

13 -3         10

Length =   Ö42 + 10   = Ö116 = 10.77 units

(iii)   Mid point  = 4 +8  ,    3 + 3

2             2

=  (6, 8)    (mid point)                                                (5 mks)

gdt of perpendicular to AB = -ve rec. of 5/2

-2/5

Eqn is  y = -2/5 x + c

8 = -2/5  x 6 + c    =  40  = -12  +  5c

= c = 52/5

 

y = -2/5 x + 52/5        (A)

 

 

  1. Acceleration = Change in velocity

Time

= (34 – 10) m/s                  = 24 m/s

60 x 10                                600

 

= 0.04m/s2-                                (2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Triangle                                    (8)

AC = 9cm

Circumference Centre

Circle

Perpendicular bisector of AB

P

Q

 

 

 

  1. (b) a b   2       3          5        6          10        12

c          d   2       4          2        10        19        13

 

2a +2b = 6  x 2       = 49 + 4b = 12

3a + 4b = 10             3a + 4b = 10

a     = 2              4 + 2b = b

 

2c + 2d = 10×2 = 4c + 4d = 20                2 b = 2  b = 1

3c + 4d  = 19        3c + 4d  = 19

c           = 1

2 (1)  + 2d = 10

2d = 8                           Matrix is           2          1      (A)

d = 4                                                  1          4

 

 

 

 

 

OC = 5/3 (31) = 5A

 

19.

 

 

(a)  = AO + OB                         MC = MO + OC

= -3a  = 4b                         = -5/8 (4b) + 5

= 5A – 5/2 b

 

(b) MN = 5 Mc     = 3(5a – 5/2 b)

= 5 s a – 5/2 s b

 

MN = BN + BN

=  3/8 (4 b) + (1 – t) (-BA)

=  3/8 (4 b) + (1 – t)(3a – 4 b)

=  3/2  b + 3 ta –4b + 4tb

= (3-3t) a (4t – 5/2)b

 

MN = MN

= 5 s a – 5/2  sb = (3-3t)a +   (4t – 5/2 )b

=  5 a =  3 – 3t       = 5s + 3t =3

= -5/2 s = 4t –5/2  v     5s + 8t = 5 

-5t = -2            t = 2/5

5 s   = 3 – 3(2/5)

= 3 – 6/5 = 9/5

= 3 – 6/5 = 9/5

s = 9/25

 

(i)    AN :     NB = 2 : 3

 

(ii)   MN :    9   :  16

 

 

 

 

 

 

 

 

20.

 

 

θ x pr2

360

 

  1. Area of sector SPR =  80/360 x 13.2 x 13.2 x 3.142

=  121.6

Area of triangle SPR ½ x 13.2  x 13.2 x sin 80

= 85.8 cm2

(m of area of ) A (at least one)

(m of area)  A(at least one)

Area of segment = 121.6 – 85.8

= 35.8 cm2

Area of sector QPR = 90/360 x 3.142 x 12 x12

 

Area of  PQR = ½ x 12 x 12 = 722

                    Area of segment = 113.1 – 72

= 41.1cm2

Area of intersection = (35.8 + 41.1) = 76.9 cm2

 

b).  Area of quadrilateral  = Area of   PQR + SPR

=  85.8 + 72 = 157.8cm2

Area of shaded region  =  Area of Quadrilateral – Area of sector SPR

=  157.8 – 121.6

=  36.2 cm2

 

 

  1. y = q                   p + x = q                       1  =  x + p

p + x                          y                      y      q    q

 

Gradient  = 1/q   at (0, 0.95)  (8,2.0)  (8,2.0)  gradient   =  2.0 – 0.95  =  1.05

8                 8

1          =  0.1312

q

=  1      =  7.619

0.1312

q =  7.62.

 

y(1/y)  Intercept   p    =  0.95     P   =  0.95

q                7.62

 

p = 7.62 x 095  =  7.27

at x =  14,  y = 2.7

at  y = 0.46,  1/y  =  2.174

x  =  9.6.

 

 

 

 

 

 

  1. a) Distance  =  75km   uphill speed  =  vkm/h

uphill Time  =  75/v hrs

Downhill speed  = ( + 20)  km/h

Downhill Time    =        75         hrs.

                                             v + 20

Takes larger uphill

75  –  75             =  1

v         v+20

75 (v+20) – 75v            = 1

v(v + 20)                    1

75v + 1500 – 75v  =  v(v + 20)  =  v2 + 20v.

v2 + 20v  – 1500  =  0

v  =  – 20 +  202 – 4(1)  (-1500)

2(1)

v  =  –20 +  400 + 6000  = –20 + v6400

2                        2.

V1     =  –20  +  80      =  30km/hr

2

V2    =   – 20 – 80      X   impossible

2

speed uphill      =  30 km /hr,  T = 75  time =  2 ½ hrs

30

speed downhill =  50 km /hr  Time = 75      Time =  2 ½ hr

50

Average speed   =  Total  distance         =  150km          =  37.5 km/ hr

                                                Total time                      4hrs

 

X 0 4 8 12 16 20
Y 1.0 0.64 0.5 0.42 0.34 0.28
1/y 1.0 1.56 2.0 2.38 2.94 3.57

 

 

  1. A                 B

 

 

 

 

D                      C

 

A x X x C  =  BX .  XD

8 x 4           =  6BX

BX       =  8 x 142          =   16  

6                     3

X AD   =  XBC

XA       =  8    =  24      =  3

XB        16        16          2

XD      =    6      =    3

XC               4              2

 

<   AXD   =   BXC            (vertically opposite  <s))

                                                    SAS holds  :  they are similar.

LSF  =   3/2    ASF  =  (3/2)2  =  9/4

Area  A x A  =  6cm2    Area  B x C  =  6 x 9       =  27   =  13.5cm2

4

 

24.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. a) AD =   50km

DC   =   35km

BD  = 90km

Bearing is 020

Bearing is 134o                                                                                                       (8mks)

 

 

MATHEMATICS  I

PART II

 

SECTION (52 MARKS)

 

  1. Without using tables, simplify

1.43 x 0.091 x 5.04

2.86 x 2.8 x 11.7                                                                                             (3mks)

 

  1. Make x the subject of the formula if

y = a/x  +  bx                                                                                                    (3mks)

 

  1. Give the combined solution for the range of x values satisfying the inequality

2x + 1<  10 – x  <   6x – 1                                                                                 (3mks)

 

  1. A man is employed at a KShs. 4000 salary and a 10% annual increment. Find the total amount of money received in the first five years                                                                   (4mks)

 

  1. A town A is 56 km from B on a bearing 0620.  A third town C is 64 km from B on the bearing of 140o.  Find

(i) The distance of A to C                                                                                        (2mks)

(ii) The bearing of A from C                                                                                          (3mks)

 

  1. Expand (x + y)6 hence evaluate (1.02) to 3d.p.                                                         (3mks)

 

  1. Rationalise the denominator in                                                                               (2mks)

 

Ö 3

1 – v3

 

 

 

  1. The table below shows daily sales of sodas in a canteen for 10 days.

 

 Day 1 2 3 4 5 6 7 8 9 10
No. of 52 41 43 48 40 38 36 40 44 45

 

Calculate the 4 day moving averages for the data                                                     (3mks)

 

  1. Find the image of the line y = 3x = 4 under the transformation whose matrix is.

3mks

2           1

-1         2

 

  1. Three points are such that A (4 , 8), B(8,7), C (16, 5). Show that the three points are collinear                                                                                                                                          (3mks)
  2. Write down the inverse of the matrix 2 – 3 hence solve for x and y if

4     3

2x  – 3y = 7

4x + 3y +5                                                                                                        (3mks)

 

  1. Use the table reciprocals to evaluate to 3 s.f. 3mks

1/7  +  3/12  +  7/0.103

 

 

 

 

 

 

 

Given that O is the centre of the circle and OA is parallel to CB, and that angle

ABC =   1070,  find

(i) Angles AOC,                (ii) OCB               (iii) OAB                                                 (3mks)

  1. Two points A and B are 1000m apart on level ground, a fixed distance from the foot of a hill. If the angles of elevation of the hill top from A and B are 60o and 30o respectively, find the height of the hill                                                                                           (4 mks)
  2. Two matatus on a dual carriageway are moving towards a bus stop and are on level 5 km from the stop. One is travelling 20 km/hr faster than the other, and arrives 30 seconds earlier. Calculate their speeds.       (5mks)
  3. If log x = a and log y = b, express in terms of a and b

Log  x 3 

VY                                                                                                             (2mks)

 

SECTION B:

 

  1. The table below gives the performance of students in a test in percentage score.
Marks 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79
No. of Students  

2

 

4

 

7

 

19

 

26

 

15

 

12

 

5

 

Using an assumed mean of 44.5, calculate

  1. The mean
  2. The standard deviation
  3. Find the median mark

 

 

 

  1. Draw the graph of y = 2x2 – x – 4 for the range of x -3  = x  =  3.  From your  graph

State the minimum co-ordinates

  1. Solve the equations
  2. 2x2 – x – 4 = 0
  3. 2x2 – 3x – 4 = 0

 

 

 

 

 

 

  1. Two concentric circles are such that the larger one has a radius of 6cm and the smaller one radius of 4 cm. Find the probability that an item dropped lands on the shaded region           4mks

 

  1. Two unbiased dice are thrown. Find the probability of obtaining (4mks)
  2. A product of 6
  3. A sum of 8

iii. The same number showing                                                                             (4mks)

 

 

 

 

 

 

 

 

 

 

Two pulley wheels centers A and B are joined by a rubber band C D E F G H C round them.  Given that larger wheel has radius of 12 cm and AB = 20 cm, CD and GF are tangents  common to  both  wheels and that CBA = 60o), Find

  1. BD (Length)
  2. CD

iii.  Arc length CHG and DEF, hence find the length of the rubber.

 

  1. V A B C D is a right pyramid with a square base A B C D of side 5 cm. Each of its four triangular

faces is inclined at 750 to the base. Calculate

  1. The perpendicular height of the pyramid
  2. The length of the slant edge VA
  3. The angle between edge VA and base A B C D
  4. The area of the face VAB

 

  1. Plot the graphs of y = sin xo and y = cos 2xo on the same axes for –180 £ x £180o.

Use your graphs to solve the equation 2 sin x = cos  2x

 

  1. The depth of the water in a rectangular swimming pool increases uniformly from 1M at the shallow

end to 3.5m at the deep end.  The pool is  25m long  and  12m  wide. Calculate the volume of the pool

in cubic meters.

The pool is emptied by a cylindrical pipe of internal radius 9cm. The water flows through the pipe at speed of 3 metres per second.  Calculate the number of litres emptied from the pool in two minutes to the nearest 10 litres.          (Take II = 3.142)

 

 

 

  1. A rectangle A B C D is such that A and C lie on the line y = 3x. The images of B and D under a

reflection in the line y = x are B1 (-1, -3) and D1 (1,3) respectively.

  1. Draw on a cartesian plane, the line y = x  and mark points B1 and D1
  2. Mark the points B and D before reflection
  3. Draw the line y = 3x hence mark the points A and C to complete and draw the rectangle ABCD.

State its co-ordinates, and these of A1 and C1.

  1. Find the image of D under a rotation, through – 900, Center the origin.

 

 

MATHEMATICS I

PART II

MARKING SCHEME.

  1. 1.43 X 0.091 X 5.04100000        91 X 504           =        7/103

                        2.86 X 2.8 X 11.7             105             2 x 28 x 117 x 103

                                                                                                                                                                                    (3)

                                                                                                                         = 0.007            (A)

  1. y = a/x + bx yx = a + bx2

Either

bx2 – yx + a = 0

 

x =     y   ±   v y2 –  4ab

2b                                                         (3)

 

  1. 2x + 1£  10 – x  £    bx  -1

2x + 1 £ 10 – x            10 –x £  6x –1

3x £   9                                    11£   7x

x  £  3                               x   £ 11/7                                                             (3)

11/7 £  x   £   3

 

  1. a = 4000 r = 110/100   =      1.1   ( 4000, 4000 + 4000, 4400 + 0/100 (4400——)

(a and r)

Sn  =  a(r n – 1)       

                                    R  -1                                                     1.1 Log  = 0.04139

     X   5

0.20695

 

0.1                               (4)

= 4000 (1.15 –1)   (any)

1.1 –1                                                   4000 (1.6 – 1)

0.1

A  =  4000 ( 0.6105)

0.1

= Sh. 2442       =    Sh. 24,420       (A)                                       (4)

0.1

 

  1. (i) b2=  a2 + b2 – 2ab Cos B

= 642  + 562– 2(64) (56) cos 78

= 4096 + 3136  – 7168 (0.2079)

= 7232  – km 1490.3

 

b2  = 5741.7  = 5.77 km                  (5)

 

(ii)        b                a

            Sin B          Sin A

 

75.77    =      64

Sin 78         sin A         Sin A = 64 x 0.9781     

75.77                   

Sin A = 0.08262

A  = 55.70  (or B = 46.30)

 

Bearing = 90 – 28 – 55.7

= 0.06.30                       (A)

 

  1. (x + y) 6 =  1 (x) 6 (y)0 + 6 (x)5 (y)1+15(x)4 (y)2 + 20x3y3 + 15x2y4 + 6xy5 + y6

(1.02)6 = (1 +0.02)6 x = 1

y = 0.02

 

(1.02)6 = 1+6 (0.02) + 15 (0.02)2 + 15(0.02) + 20(0.02)3 + 15 (0.02)4                          

=  1 + 0.12  + 0.006 + 0.00016

= 1.12616

= 1.126  (to 3 d.p)                                                                                 (3)

 

  1.       3(1 +  3)                 =  3  +  3          3 + v3

(1-  3)(1+  3)                     1-3                          2

 

  1. Moving averages of order 4

M1        =  52 + 41 + 43 + 48                  184       = 146

4                                   4

M2            184 – 52 + 40   = 172  = 43                               for 7

4                 4                                   for > 4

M3             = 172– 40 + 38 = 170    = 42.5

4                     4

M4             170 – 38+36  = 168   = 42

4                  4

M5        = 168 – 36 + 40 = 173    = 43                (3)

4                4

M6             = 172 – 40 + 44 = 176    = 44

4              4

M7             = 176 – 44 + 45 = 177    = 44.25

4             4

 

  1. y = 3x + 4

A(0,4) B (1,7) Object points

                                                A         B          A         B

2          1          0          1          4          9

=

-1         2          4          7          8          13

Y =  Mx + C

M = 13 – 8  =  5  = 1

9-4                  5     1

 

y = x+c                                  y = x + 4

8 = 4 + c    c  = 4

 

  1. AB = 8     -4                        4                      BC =   16      – 8                        -8     for either

=

7     -8                      -1                                  5        – 7             -2

 

 

AB = ½   BC  and AB and BC share point B.

A,B,C  are collinear.                                                                (3)

 

  1. 2          -3

 

4          3          det. = 6 + 12 = 18

Inv.=     1         3          3

18

-4         2

1         3      3     2     -3   x       1           3   3       7

18                                            18

-4    2      4       2  y                     -4  2       5

x                       36

1

y          18        -18                    (3)

x = 2, y = -1      (A)

 

  1. 1/7 + 3/12.4 + 7/0.103

1/7 + 3/1.24 x 10-1 + 7/1.03 x 10-1

 

  0.1429 + 3(0.8064) + 7 x 10 (0.9709)

10

= 0.1429 + 0.2419 + 67.96                                 (3)

=70.52                             (A)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. (i) ADC = 2×73

= 1460

 

(ii) OCB = x = 180 – 146 = 34

(iii) 360 – 107 – 146 – 34

= 73 0

 

  1. Tan 300 = y/x y  =  x tan  30

Tan 600  = 1000 + y       ;     y = x tan 60 – 1000

X

X tan 300  = x tan 60 – 1000

0.5773 x = 1.732x – 1000

1.732x – 0.577 = 1000

1.155x = 1000

x = 1000

1.155           = 866.0 m         (A)                   (4)

 

 

  1. 5 km Slower speed = x km/hr

Time    = 5/x

Faster = (x+20) k/h

Time = 5/x=20            T1 – T2 = 5/x  – 5/x+20 = 30/3600

5 (x+20) –5x       1

x(x+20) 120

120 (5/x + 100 – 5x) = x2 + 20x             (5)

x2 + 20x – 12000

x = –20      400 + 48000

2

x = -20 ±  220

2

Spd = 100 km/h

And x = 120 km/h                                 (A)

  1. Log x = a log y = b

Log  x3  = Log x3  –  log y ½

y

= 3 Log x – ½ Log y

= 8a –  ½ ab

 

SECTION B

 

17.

Marks Mid point (x) d = x-44.5 F E = d/10 Ft T2 Ft2   v
0-9 4.5 -40 2 -4 -8 16 32
10-19 14.5 -30 4 -3 -12 9 36
20-29 24.5 -20 7 -2 -14 4 28
30-39 34.5 -10 19 -1 -19 1 19
40-49 44.5 -0 26 0 0 0 0
50-59 54.5 -10 15 1 15 1 15
60-69 64.5 20 12 2 24 4 48
70-79 74.5 30 5 3 15 9 45

=90                              =1                                =223

 

 

(a)   Mean = (1 / 90 x 10) + 44.5 = 44.5 + 0.111

= 44.610

 

(b)   Standard deviation = 10  233/90  – (1/90)2                        

                                                            10  2.478  – 0.0001                              (8)

10   2.478

10 x 1.574  = 15. 74    (A)

(c)    Median 45.5th value  = 39.5  + (13.5 x 10/ 26)

39.5 + 5.192                 (A)

44.69

 

(a)     The probability  = Shaded area

                                     Large circle area

Shaded area = ПR2 – П r2

= 22/7 (42 – 32) v  = 22/7 x 7  = 22

            Large area  = 22/7 x4x4 = 352/7 (A)

Probability = 22         = 22  x  7 =    7

352/7            352      16

 

(b)

  1 2 3 4 5 6
1 1,1 1,2 1,3 1,4 1,5 1,6
2 2,1 2,2 2,3 2,4 2,5 2,6
3 3,1 3,2 3,3 3,4 3,5 3,6
4 4,1 4,2 4,3 4,4 4,5 4,6
5 5,1 5,2 5,3 5,4 5,5 5,6
6 6,1 6,2 6,3 6,4 6,5 6,6

(M)

 

(i)    P(Product of 6) = P((1,6) or (2,3) or (3,2) or (6,1))

= 4/36   =  1/9

(4)

(ii)   P (sum of 8)   = P( (2,6) or (3,5) or (4,4) or (5,3) or (6,2) )

= 5/36               (A)

 

(iii)  P (same number)  = P (1,1) or (2,2) or (3,3) or (4,4) or (5,5) or (6,6)

6/36  = 1/6   (A)

 

 

 

 

 

 

 

 

 

 

(i)         Cos 60   = x/20 x = 20 x 0.5  = 10 cm

BD = 12 – 10 = 2 cm

 

(ii)          CD = y  Sin 60  = y/20                        y = 20x 0.8666

CD = 17.32 cm

 

 

 

 

(iii)        CHG  = 120        reflex  = 2400

CHG = 240/360 x 2 x p x r

= 50.27

DBF = 1200/360  x 2 x  П x  r  =  1/3 x 2 x 3.142 x 2

=  4.189                               (A)

Length C D E f G H C  =          50.27 + 2(17.32) + 4.189

= 89.189                     (A)

 

  1. (a) From the diagram, XO = 5/2 = 2.5

Tan 750 = VO/2.5          v m

VO  =  2.5 x 3.732

 

Perpendicular height  = VO  = 9.33 cm

2                      (A)

  1. Diagonal of base = 52 + 52  = 50
        Length of diag.   50       = 7.071    = 5.536

VA2 = AO2 + VO2     (m)

3.5362  + 9.32

12.50 + 87.05

= 99.55 = 9.98 cm2        (A)                  (8)

 

 

(c )                   = VAO  Tan =      9.33     = 2.639

3.536

VAO = 69.240                                                (A)

 

 

(d)                    Cos VBA = = 2.5 /9.98   = 0.2505

VBA = 75.490

Area VBA = ½  x 5  x 4.99 x sin 75.45             m  ( or other perimeter)

= 5 x 4.99 x   0.9681

= 24.15 cm2                  (A)

 

  1. Volume = cross – section Area x L

X-sec Area = (1 x 25)  +  (½  x 25 x 2.5)

=  25 + 31.25  =  56. M

Volume  = 56.25 x 12

= 675 m3                               

            Volume passed / sec  = cross section area x speed

= П r2 x l           = 3.14  x  9/100 x  9/100  x 3                 (8)

= 0.07635  m3 /sec         v (M)

Volume emptied in 2 minutes

= 0.07635 x 60 x 2

= 9.162 m2                (A)

1 m3  = 1000 l

= 9.162 litres

= 9160 litres                 (A)

 

 

 

 

 

24.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MATHEMATICS II

PART I

 

SECTION A (52 MARKS)

 

  1. Use tables to evaluate

3Ö 0.09122 + Ö 3.152                                                           (5mks)

0.1279 x 25.71

  1. Simplify  (a – b)2

a2 – b2                                                             (2mks)

 

 

  1. The gradient function of a curve that passes through point: (-1, -1) is 2x + 3.

Find the equation of the curve.                                                                               (3mks)

  1. Find the value of k for which the matrix k     3

has no inverse.   (2mks)                            3     k

  1. Without using tables, evaluate       log 128 – log 18

log 16 – log 6                                                          (3mks)

  1. Find the equation of the locus of points equidistant from point L(6,0) and N(-8,4). (3mks)
  2. The value of a machine is shs. 415,000. The machine depreciates at a rate of 15% p.a. Find how many years it will take for the value of the machine to be half of the original value. (4mks)
  3. Use reciprocal tables to evaluate to 3 d.p. 2             1   

0.321           n2.2                                          (4mks)

  1. Using the trapezium rule, estimate the area bounded by the curve y = x2, the x – axis and the co-ordinates x = 2 and x = 5 using six strips. (4mks)
  2. Solve the equation for 00 £ q £ 3600 and Cos2q + ½ Cosq = 0 (3mks)
  3. Point P divides line MK in the ratio 4:5. Find the co-ordinates of point P if K is point (-6,10) and M is

point (3,-8)                                                                                                                          (3mks)

  1. How many multiples of 3 are there between 28 and 300 inclusive. (3mks)
  2. The line y = mx – 1, where m is a constant , passes through point (3,1). Find the angle the line makes with the x – axis. (3mks)
  3. In the figure below, AF is a tangent to the circle at point A. Given that FK = 3cm, AX = 3cm, KX = 1.5cm and AF = 5cm, find CX and XN. (3mks)

 

 

 

 

 

 

 

 

 

 

 

  1. Make X the subject of the formula (3mks)

V = 3Ö k + x

sk – x

 

 

 

 

 

 

 

 

  1. Write down the inequalities that describe the unshaded region below. (4mks)

y

 

 

0.5         2                   x

 

-1.5

-2

 

      SECTION B (48 MARKS)

     

  1. Draw the graph of y = -x2 + 3x + 2 for –4 £ x £ 4. Use your graph to solve the equations

(i.) 3x + 2 – x2 = 0               (ii) –x2 – x = -2                                                       (8mks)

 

  1. The marks obtained by Form 4 students in Examination were as follows:

 

 

Marks 0-9 10-19 20-29 30-39 40-49 50-59
No. of students 2 8 6 7 8 10
Marks 60-69 70-79 80-89 90-99  
No. of Students 9 6 3    

      Using 74.5 as the Assumed mean, calculate:

(i) The mean mark

(ii) The standard deviation                                                                                      (8mks)

  1. In the figure below, a and b are the position vectors of points A and B respectively. K is a point on

AB such that the AK:KB = 1:1. The point R divides line OB in the ratio 3:2 and point S divides OK in

the ratio 3:1.

 

B

R

B                                 K

 

0               a                     A

(a) Express in terms of a and b

(i) OK       (iii) RS

(iii) OS      (iv) RA

(b) Hence show that R,S and A are collinear.                                                          (8mks)

 

  1. The figure below is the roof of a building. ABCD is a rectangle and the ridge XY is centrally placed.

 

 

 

 

 

 

 

 

 

 

 

Calculate:

(i) The angle between planes BXC and ABCD.

(ii) The angle between planes ABXY and ABCD.                                                          (8mks)

  1. On the same axis, draw the graph of y = 2cosx and y = sin ½x for 00 £ x £ 1800, taking intervals of 150

                                                                                                                                                                                                          (6mks)

From the graph, find:

(a) The value of x for which 2cosx = sin ½ x                                                                              (1mk)

(b) The range of values of x for which –1.5 £ 2cos x £ 1.5                                              (1mk)

  1. Two towns T and S are 300km apart. Two buses A and B started from T at the same time travelling towards S. Bus B travelled at an average speed of 10km/hr greater than that of A and reached S 1 ¼ hrs earlier.

(a) Find the average speed of A.                                                                                    (6mks)

(b) How far was A from T when B reached S.                                                                (2mks)

  1. P and Q are two ports 200km apart. The bearing of Q from P is 0400. A ship leaves port Q on a bearing of 1500 at a speed of 40km/hr to arrive at port R 7 ½ hrs later. Calculate:

(a) The distance between ports Q and R.                                                                        (2mks)

(b) The distance between ports P and R.                                                                  (3mks)

(c) The bearing of port R from port P.                                                                      (3mks)

  1. A farmer has 15 hectares of land on which he can grow maize and beans only. In a year he grows maize on more land than beans. It costs him shs. 4400 to grow maize per hectare and shs 10,800 to grow beans per hectare. He is prepared to spend at most shs 90,000 per year to grow the crops. He makes a profit of shs 2400 from one hectare of maize and shs 3200 from one hectare of beans. If x hectares are planted with maize and y hectares are planted with beans.

(a) Write down all the inequalities describing this information.                                      (13mks)

(b) Graph the inequalities and find the maximum profit he makes from the crops in a year.          (5mks)

 

 

MATHEMATICS II

PART II

 

  1. Use logarithm tables to Evaluate

3Ö 36.5 x 0.02573

1.938                                                                                                              (3mks)

  1. The cost of 5 shirts and 3 blouses is sh 1750. Martha bought 3 shirts and one blouse for shillings 850. Find the cost of each shirt and each blouse.             (3mks)
  2. If K = ( y-c  )1/2

4p

  1. a) Make y the subject of the formula.       (2mks)
  2. b) Evaluate y, when K = 5, p = 2 and c = 2                                                                   (2mks)
  3. Factorise the equation:

x + 1/x = 10/3                                                                                                             (3mks)

  1. DA is the tangent to the circle centre O and Radius 10cm. If OD = 16cm, Calculate the area of the shaded Region.       (3mks)

 

 

 

 

 

 

 

 

 

 

 

  1. Construct the locus of points P such that the points X and Y are fixed points 6cm apart and

ÐXPY =     600.                                                                                                            (2mks)

  1. In the figure below, ABCD is cyclic quadrilateral and BD is diagonal. EADF is a straight line,

CDF = 680, BDC = 450 and BAE = 980.

 

 

 

 

 

 

 

 

Calculate the size of:                                                                                               (2mks)

  1. a) ÐABD                                       b) ÐCBD
  2. Otieno bought a shirt and paid sh 320 after getting a discount of 10%. The shopkeeper made a profit of 20% on the sale. Find the percentage profit the shopkeeper would have made if no discount was allowed?       (2mks)
  3. Calculate the distance:
  4. i) In nautical miles (nm)
  5. ii) In kilometres (km)

Between the two places along the circle of Latitude:

  1. a) A(300N, 200E) and B(300N, 800E) (Take Radius of Earth = 6371Km).                (2mks)
  2. b) X(500S, 600W) and Y(500S, 200E) (Take Radius of Earth = 6371Km).                  (2mks)
  3. A rectangular tank of base 2.4m by 2.8m and height 3m contains 3,600 litres of water initially. Water flows into the tank at the rate of 0.5m/s. Calculate the time in hours and minutes required to fill the tank. (4mks)
  4. Expand (1 + a)5 up to the term of a power 4. Use your expansion to Estimate (0.8)5 correct to 4 decimal places. (4mks)  
  5. A pipe is made of metal 2cm thick. The external Radius of the pipe is 21cm. What volume of metal is there in a 34m length of pipe (p = 3.14).       (4mks)
  6. If two dice are thrown, find the probability of getting: a sum of an odd number and a sum of scoring more than 7 but less than 10. (4mks)
  7. Find the following indefinite integral ò 8x5 – 3x dx                                                                  (4mks)

x3

  1. The figure below represents a circle of radius 14cm with a sector subtending an angle of 600 at the centre.

 

 

.

 

 

 

 

 

 

 

Find the area of the shaded segment.                                                                                         (3mks)

 

 

 

 

 

 

 

 

  1. Use the data below to find the standard deviation of the marks.

 

Marks (x ) Frequency (f)
5

6

7

8

9

3

8

9

6

4

(4mks)

 

SECTION II (48MKS)

 

  1. The figure below shows a cube of side 5cm.

 

 

 

 

 

 

 

 

 

 

 

 

 

Calculate:

  1. a) Length FC                                                                                                      (1mk)
  2. b) Length HB                                                                                                        (1mk)
  3. c) Angle between GB and the plane ABCD. (1mk)
  4. d) Angle between AG and the Base.       (1mk)
  5. e) Angle between planes AFC and ABCD. (2mks)
  6. f) If X is mid-point of the face ABCD, Find angle AGX. (2mks)
  7. Draw on the same axes the graphs of y = Sin x0 and y = 2Sin (x0 + 100) in the domain 00 £ x0 £ 1800
  8. i) Use the graph to find amplitudes of the functions.
  9. ii) What transformation maps the graph of y = Sin x0 onto the graph of : y = 2Sin (x0 +100).
  10. The table below shows the masses to the nearest gram of 150 eggs produced at a farm in Busiro

country.

Mass(g) 44 45 46 47 48 49 50 51 52 53 54 55
Freq.  1  2  2  1  6  11  9  7  10  12  16  16
Mass(g) 56 57 58 59 60 61 62 63 64 65 70  
Freq.  10  11  9  7   5  3  4  3  3  1  1  

 

Make a frequency Table with class-interval of 5g. Using 52g as a working mean, calculate the mean mass. Also calculate the median mass using ogive curve.

  1. A shopkeeper stores two brands of drinks called soft and bitter drinks, both produced in cans of same

size. He wishes to order from supplies and find that he has room for 1000 cans. He knows that bitter

drinks has higher demand and so proposes to order at least twice as many cans of bitter as soft. He

wishes however to have at least 90cans of soft and not more than 720 cans of bitter. Taking x to be

the number of cans of soft and y to be the number of cans of bitter which he orders. Write down the

four inequalities involving x and y which satisfy these conditions. Construct and indicate clearly by

shading the unwanted regions.

 

 

 

 

  1. Two aeroplanes, A and B leave airport x at the same time. A flies on a bearing 0600 at 750km/h and B flies on bearing of 2100 at 900km/h:
  2. a) Using a suitable scale draw a diagram to show the positions of Aeroplanes after 2hrs.
  3. b) Use your graph to determine:
  4. i) The actual distance between the two aeroplanes.
  5. ii) The bearing of B from A.

iii) The bearing of A from B.

  1. The Probabilities that it will either rain or not in 30days from now are 0.5 and 0.6 respectively. Find the probability that in 30 days time.
  2. a) it will either rain and not.
  3. b) Neither will not take place.
  4. c) One Event will take place.
  5. Calculate the Area of each of the two segments of y = x(x+1)(x-2) cut off by the x axis. (8mks)
  6. Find the co-ordinates of the turning point on the curve of y = x3 – 3x2 and distinguish between them.

 

MATHEMATICS II

PART I

MARKING SCHEME:

 

  1. 0.09122 = (9.12 x 10-2)2 = 0.008317

Ö 3.152 = 1.776

3Ö 1.776 + 0.008317

0.1279 x 25.91

= 3Ö 1.784317              No.             log      

0.1279 x 25.91           1.784         0.2514

0.1279    -1.1069

25.71           1.4101 +

0.5170

-1.7344

x 1/3

10-1 x 8.155(6)                    1-1.9115

Or 0.8155(6)

 

  1. (a – b)(a – b) a – b

(a – b)(a + b)       a + b

 

  1. dy = 2x + 3

dx

y = x2 + 3x + c

-1 = 1 – 3 + c

c = 1     ;     E.g  y = x2 + 3x + 1

 

  1. K2 – 9 = 0

K = ± 3

 

  1. log 128    =  log       64

18                    9

 

log   16        log     8 

6                    3

2 log (8/3)

log (8/3)

= 2

 

  1. Midpoint -8 + 6, 4 + 0         (-1, 2)

2         2

Gradient of LN = 4/-14 = -2/7

Gradient of ^ bisector = 7/2

y – 2  = 7/2

x + 1

y = 7/2X + 11/2

 

  1. 207,500 = 415,000(1 – 15 )n

100

0.5 = ( 85 )n

100

0.5 = 0.85n

log 0.5 = n log 0.85

log 0.5  = n

log 0.85

n = –1.6990   =    -0.3010 = 4.264yrs

-1.9294      -0.0706

 

  1. 2 x      1        =   1  . x 20 = 0.3115 x  20 = 6.230

3.21 x 10-1    3.21

   1     =         1      =  0.5807 = 0.005807

172.2    1.722 x 102           100

6.230 – 0.005807 = 6.224193

= 6. 224(3d.p)

 

X 2 2.5 3 3.5 4 4.5 5
y 4 6.25 9 12.25 16 20.25 25

h = ½

Area= ½ x ½[29+2(6.25+9+12.25+16+20.25+25)]

= ¼ [29 + 127.5]

= ¼  x 156.5  =  39.125  sq. units.

 

  1. Cos q (cos q + ½ ) = 0

cos q = 0        cos q = -0.5

q = 900, 2700    q = 1200, 2400              

\ q = 900, 1200, 2400, 2700

 

  1. MP = 4 MK MK =      -9

9                                   -18

MP = 4 ( -9  ) = ( -4 )

9  -18          8

\ P is ( -1,0 )

 

  1. a = 30 d = 3   l = 300

300 = 30 + 3 (n – 1 )

300 = 30 + 3n – 3

300 – 27 = 3n

273 = 3n

91 = n  

 

 

 

 

  1. y = mx – 1

1 = 3m – 1

m = 2/3 = 0.6667

tan q = 0.6667  ;     q = 33.690    

 

  1. FK x FC = FA2

FC = 25/3 = 8 1/3 cm

CX = 81/3 – 9/2 = 23/6 = 35/6 cm

CX x XK = XA x XN

33/6 x 3/2 = 3 x XN

\ XN = 111/12 cm

 

  1. V3 = k + x

k – x

V3k – V3x = k + x

V3k – k = x + V3x

V3k – k = x( 1 + v3)

V3k – k  = x

1 + V3

 

  1. (i.) x = 2 Þ x £ 2

(ii) y = -2 Þ y > -2

(iii)pts. (0.5,0)

(0,-1.5)

m = -1.5 – 0  = 3

0 – 0.5

Eq. Y = 3x – 1.5    y < 3x – 1.5

 

     

SECTION B

 

X -4 -3 -2 -1 0 1 2 3 4
Y -26 -16 -8 -2 2 4 4 2 -2

(i) Roots are x = -0.5   x = 3.6

 

(ii)  y = -x2 + 3x + 2

0 = -x2 – x + 2 

y = 4x     (-2, -8) (1, 4)

Roots are x = -2, x = 1

 

  1. class x f       d=x-74.5       fd             d2       fd2    

0 – 9        4.5    2         – 70         – 140       4900        9800

10 – 19    14.5     8         – 60         – 480       3600     28,800

20 – 29    24.5     6         – 50         – 300       2500     15,000

30 – 39    34.5     7         – 40         – 280       1600     11,200

40 – 49    44.5     8         – 30         – 240         900       7,200

50 – 59    54.5    10        – 20         – 200         400       4,000

60 – 69    64.5     9         – 10           – 90         100          900

70 – 79    74.5     6            0               0              0              0

80 – 89    84.5     3          10              30         100          300

90 – 99    94.5     1          20            20         400          400   

Sf =       Sfd =                                     Sfd2 =     77,600

60                        -1680

(i) Mean = 74.5 + -1680

60

= 74.5 – 28  =    46.5

(ii) Standard deviation = Ö 77600 – ( –1680 )2

60            60

= Ö 1283.3 – 784

= Ö 499.3 = 22.35

 

  1. a (i.) OK = OA + AK = ½ a + ½ b

(ii) OS = ¾ OK = 3/8 a + 3/8 b

(iii)RS = RO + OS = 3/8 a – 9/40 b

(iv) RA = RO + OA = – 3/5 b + a

 

  1. RA = a – 3/5 b   RS = 3/8 a + 9/40 b

= 3/8( a – 3/5 b)

\ RS = 3/8 RA

The vectors are parallel and they have a common

point R  \ point R, S and A are collinear

 

 

 

 

 

 

 

 

 

 

 

 

 

KB = 3m   NK = 1.5m   XB = 5m

(i)  XK = Ö 52 – 32  = Ö 16 = 4m

let ÐXKN = q

cos q = 1.5  = 0.375

4

q = 67.97(8)0

 

(ii) In DXNK

XN = Ö 42 – 1.52 = Ö 13.75 = 3.708

In D SMR; MR = KB = 3m

SM = XN = 3.708m

Let ÐSRM = a

tan a = 3.708  =1.236

3

a = 51.02(3)0

 

 

 

 

 

 

 

 

 

21.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21.

 

  0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800
Y =2cosX 2.00 1.93 1.73 1.41 1.00 0.52 0.00 -0.52 -1 -1.41 -1.73 -1.93 -2.00
Y = sin ½ X 0.00 0.13 0.26 0.38 0.50 0.61 0.71 0.79 0.87 0.92 0.97  0.99 1.00

(a) X = 730 ± 10

(b) Between 40.50 and 139.50

 

 

  1. 300km

T                                               S

Let the speed of A be X km/hr

Speed of B = (X + 10) km/hr

Time taken by A = 300 hrs

X

Time taken by B = 300 hrs

X + 10

300300  =  5

x    x + 10    4

300(x + 10) – 300x  = 5

x(x + 10)    4

300x + 300 – 300x = 5

x2 + 10x

x2 + 10x – 2400 = 0.

x = 44.25

X = -54.25 N/A

(b) Distance covered by A in 1 ¼ hrs  = 44.25 x 5/4  = 55.3 km

Distance of A from T is 300 – 55.3 = 244.7 km

 

 

 

 

 

 

 

 

 

  1. (a) Distance = 15 x 40 = 300km

2

(b)

 

 

 

 

 

 

 

 

 

 

 

PR2 = 2002 + 3002 –2x 200 x 300 cos700

= 130,000 – 41040   =   88,960

PR = 298.3 km

 

(c) 298.3  = 300

sin 700    sin a

sin a = 300 sin 700

298.3

= 0.9344

a = 69.10

 

Bearing of R from P is

40 + 69.1 = 109.10

 

  1. (i.) X > y

(ii) 4,400X + 10,800Y £ 90,000

Simplifies to 11X + 27y £ 225

(iii) X + y £ 15

X > 0;  y > 0

Boundaries

x = y pts (6,6) (12,12)

11x + 27y = 225 pts (13,3) (1,8)

X + y = 15 pts (0,15) (8,7)

Objective function

2400 x 3200y

(pt (2,1)

2400X + 3200y = 8000

Search line ® 3X + 4y = 10

Point that give maximum profit is (12,3)

\ maximum profit

= 2400 x 12 + 3200 x 3 = 38,400 shs.

 

 

 

 

 

 

 

 

 

MATHEMATICS  II

PART II

MARKING SCHEME

 

  1. No log.

36.5        1.5623

0.02573   –2.4104 +

-1.9727

1.938         0.2874 –

-1.6853

 

-3  + 2.6853 

3         3

-1 + 0.8951

1.273(4) ¬ 0.1049

= 1.273(4)

 

  1. Let shirt be sh x,

let blouse be sh. y.

5x + 3y =1750 (i.)

3x + y = 850    (ii)

mult (ii) by 3

9x + 3y = 2550 (iii)

Subtract  (iii) – (i.)

– 4x = -800

Subt for x

  1. = 250

Shirt = sh 200  ;   Blouse = sh 250

     

  1. (a) K2 = y – c

4p

y – c = 4pK2

y = 4pK2 + c

(b)    y = 4 x 2 x 25 + 2   ;      y = 202

 

  1. x2 + 1 – 10x = 0

3

3x2 – 10x + 3 = 0

3x (x – 3) – 1(x – 3) = 0

(3x – 1) (x – 3 ) = 0

x = 1/3  or x = 3                                                                                                             

 

  1. Area D OAD pyth theorem AD =12.49cm

½  x 12.49 x 10  =   62.45cm2

Cos q = 10/16 = 0.625

q = 51.30                                     62.5

Sector 57.30  x 3.14 x 100    40.2 –

360                        = 22.3

 

 

 

 

 

 

 

 

  1. ÐXPY = 600

\ÐXC1Y = 1200

              B1             \ÐC1XY = ÐC1YX

= 1800 – 1200  = 300

2

 

 

 

 

Construct 300  angles

at XY to get centres

B1           C1 and C2  mojar arcs drawn

2            on both sides with C1X and C2X

as centres.

 

 

 

 

 

 

 

 

 

 

  1. DAB = 1800 – 980  = 820

ADB = 180 – (68 + 45 ) = 670

                                                                                                                                              ABD = 180 – (67 + 82)

= 310

 

(a) 1800 – (67 + 82)0 = 310

       ÐABD = 310                                                                                 Opp = 1800

(b) (180 – 82)0 = 980                                                                                   82 + 98 = 1800

        1800  – (980 – 450) =

ÐCBD = 370                                                                                  180 – (98 + 45)

= 370

  1. 10 x 320

100     Discount = sh 32

Sold at      sh 288

If no Discount = ( 320 x 20 ) % = 22.7%

288

 

  1. (a) Dist along circle of lat.

Long diff x 60 x cos q nm

100 x 60 x Cos 500

100 x 60 x 0.866

5196nm =      100 x 2pR Cos 500

                                               360

100  x 2 x 3.14 x 6371

360                       =  5780Km

 

 

 

 

 

 

(b) 80 x 60 Cos 50  = 3895 Km

 

  1. Vol =2.8 x 2.4 x 3 = 20.16m3

          1m3 = 1000 L

20.16m3 = 20160 L

20160

    3600       

16560 L to fill

0.5 L – 1 sec

16560 L – ?

 165600

5 x 3600

33120  hr

3600             @ 9.41 hrs     ;     @ 564.6 min.

 

  1. 15 + 5.14a + 10.13.a2 + 10.12a3 + 5.1.a4

a = -0.2

1 + 5(-0.2) + 10(-0.2)2 + 10(-0.2)+ 5 (-0.2)4

1 – 1.0 + 0.4 – 0.08 + 0.008  =   0.3277 (4d.p)                                                                                                                     

 

  1. Area of metal : Material – Cross section.

p(R2 – r2)

3.14 (21 –19)

Vol  6.28cm2 x 3400cm

= 215.52m3        

                                       

  1. Possibility space:

 

.            1  2  3  4  5  6 

1     2  3  4  5  6  7

2     3  4  5  6  7  8

3     4  5  6  7  8  9

4     5  6  7  8  9  10

5     6  7  8  9 10 11

6     7 8  9 10 11 12

 

P(odd) = 3/6 = ½

P(Sum > 7 but < 10)   =   9 /36

\ P(odd) and P(sum > 7 but < 10 )

= ½  x 9/36 = 9/72     =  1/8

 

  1. ò( 8x5/x3 – 3x/x3) d4

ò( 8x2 – 3x-2) d4                                                                

16x3/3 + 6x-3/-3  + C                                                 

16x3/3 – 2/x+ C

 

  1. Area of DAOB

½  x 14 x 14 x 0.866  =  84.866cm2

Area of sector  =  60  x3.14 x 14 x14 = 10.257

360

Shaded Area

84.666  –  10.257 = 74.409cm2                            

 

 

 

 

 

Marks F Fx fx2
5 3 15 75
6 8 48 288
7 9 63 441
8 6 48 384
9 4 36 324

 

åx =    åf=30   åfx=210   1512

S.d =  Ö åfx2  –  ( åfx )2

                             åf            åf

= Ö 1512   –  (210)

30            30

=  Ö 50.4 – 49

=   Ö 1.4  = 1,183                                                       

 

       SECTION II                                               .

 

  1. (a) FC = Ö 52 + 7.072 = Ö 50 = 7.071

(b) HB = Ö 52 + 7.072    = Ö 75 = 8.660

(c) q = Tan-1 5/5 = Tan-1   = 450                                                         

(d)  b = Tan-1 5/7.071 = Tan-1 0.7071  =  35.30                                                        

(e)  y = Tan-1 5/3.535   = Tan-1    = 54.70                                                        

(f) ÐAGX = 19.40

 

 

  1. y = Sin x
      x0 00 300 600 900 1200 1500 1800
sin x0 0 0.50 0.66 1.00 0.866 0.500 0

 

y = 2 Sin (x0 + 100)

      X0 00 300 600 900 1200 1500 700
2 Sin(x +100) 0.3472 1.286 1.8794 1.286 0.3472 -0.3472 -1.8794

Amplitudes for y = Sin x0 is 1

For

y = Sin(x+100) is 2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c.f X F
61 53 12
16   54
93 55 16
103 56 10
11   57
123 58 9
130 59 7
135 60 5
138 61 3
142 62 4
145 63 3
148 64 3
149 65 1
150 70 1

 

Mean =  x    + 52  + -4

150

52 –  0.02

=     51.08

Median  =     51.4g.

 

class interval 59

Class interval mid point Freg. c.f
44-48 46 12 12
49-53 51 49 61
54-58 56 64 125
59-63 69 22 147
64-68 66 3 130
69-73 71 1 150

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. X + Y £ 1000

X £ 2Y

Y < 720

X > 90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21.(a)    1cm = 200Km/h

A = 200 x 7.5  =  1500 Km

B =  200 x 9  = 1800Km.

 

(b) (i.) 15.8cm x 200                     (ii) Bearing 2240

= 3160 Km.                              (iii) Bearing 0490

 

  1. (a) P(R) x P(R)1                         (b) P(R)¢ x P(R)                        (c) P(R) x P(R’)

= 0.5 x 0.6                                     0.5 x 0.4                                          P(R)’ x P(R)

= 0.3                                     =  0.2                                            0.5 x 0.6 = 0.3

0.5 x 0.4 = 0. 2= 0.5

  1. y = x(x + 1)(x – 2)

= x3 – x2 – 2x

A1 = ò(x3 – x2 –2x) d4                                

-1[¼ x4 –  1/3 x2]-1

= 0 – ( ¼ + 1/3 – 1)    =  5/12

A2 = 2ò(x3 – x2 –2x) d4

0ò ¼ x4 – 1/3 x3 – x2)-20                     

= ( ¼ .16 – 1/3 .8 – 8 )

= 4-0 – 8/3 – 4  =   – 8/3

              A1 = 5/12= A2 = 2 2/3         

                            

  1. y = x3 – 3x2

dy  = 3x2 – 6x

At stationary

Points      dy = 0

dx

i.e   3x2 – 6x = 0

3x(x – 2) = 0

x = 0 or 2

Distinguish

dy = 3x2 – 6x

dx

d2y  =  6x – 6

dx2

    (i)    x = 0  dy2 = 6x – 6 = -6                 (ii)       x = 2

dx2                                                 d2y  =  6

-6 < 0 – maximum.                               dx2

\ (0,0) Max Pt.                                                6 > 0 hence

Minimum Pt.

x = 2,  y = 8 – 12 = -4

(2, -4)     minimum point.

 

MATHEMATICS II

PART I

 

SECTION 1 (52 Marks)

  1. Without using tables evaluate:

 

Ö7.5625 x 3Ö3.375

15                                                                                                        (5 mks)

 

  1. Make k the subject of the formula.

y = 1  Ök + y                                                                            

T2      k                                                                                                       (3 mks)

 

  1. If A = (x, 2) and xB     =     x     and if AB = (8), find the possible values of x.

-2                                                                                 (3 mks)

  1. Simplify completely. (3 mks)

rx4 – r

2xr – 2r

 

  1. Solve the equation. (3 mks)

Log 3 (8-x)  –  log 3 (1+x) = 1

 

  1. Under an enlargement scale factor -1, A(4,3) maps onto A1 (4,-5). Find the co-ordinates of the centre of enlargement. (3 mks)

 

  1. Find the equation of the line perpendicular to the line 4x-y = -5 and passing through the point (-3,-2).       (2 mks)
  2. Find the standard deviation of the data below:

3,5,2,1,2,4,6,5                                                                                                   (4 mks)

 

  1. What is the sum of all multiples of 7 between 200 and 300? (4 mks)

 

  1. Solve the equation.

½ tan x  =  sin x for -1800  £  x  £  3600.                                                            (3 mks).

 

  1. Expand (1-2x)4. Hence evaluate (0.82)4 correct to 5d.p. (4 mks)

 

  1. The line y = mx – 3 passes through point (5,2). Find the angle that the line makes with the x-axis. (2 mrks)
  2. A two digit number is such that 3 times the units digit exceed the tens digit by 14. If the digits are reversed, the value of the number increases by 36. Find the number (4 mks)

 

 

 

 

 

 

  1. In the figure below, O is the centre of the circle, OA = 7 cm and minor arc AB is 11 cm long. Taking P = 22/7, find the area shaded. (3 mks)

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. A box contains 36 balls, all identical except for colour. 15 of the balls are black, 15 are brown and the rest are white. Three balls are drawn from the box at random, one at a time, without replacement. Find the probability that the balls picked are white, black and brown in that order. (2 mks)

 

  1. Find the inequalities that describe the unshaded region R below. (4 mks)

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SECTION  2 (48 Marks)

 

  1. Draw the graph of y = x2 + x – 6 for -4 £ x £

Use your graph to solve the equations.

(i)  x2 + x – 6 = 0                       (ii) x2 + 2x – 8 = 0                                             (8 mks)

 

  1. The diagram below represents a bucket that has been placed upside down. The radius of the top surface is 15cm and that of the bottom is 40cm. The vertical height of the bucket is 50cm.

 

 

 

 

 

 

 

 

 

 

 

 

 

Determine:-

  • The volume of the bucket.
  • The curved surface area of the bucket. (leave your answers in terms of p)

 

  1. Draw, on the same axes, the graphs of y = cos q and y = 5 sin q for – 1800 £ q £ 1800
  • From your graph, determine the amplitude of each wave.
  • For what value(s) of q is cosq – 5 sin q = 0 (8 mks)

 

  1. A point P lies on a coast which runs from West to East. A ship sails from P on a bearing of 0320. When it reaches Q, 7km from P, a distress signal is observed coming from another ship at R. Given that R is N.E of P and on a bearing of 0660 from Q, calculate:
  • Ð
  • The distance QR, between the two ships.
  • The shortest distance from R to the shore. (8 mks)

 

  1. A bag contains x red balls and y yellow balls. Four times the number of red balls is equal to nine times the number of yellow balls and twice the total number of balls exceeds the number of yellow balls by 44.
  • How many balls of each colour are three in the bag?
  • If two balls are drawn out of the bag at random one at a time with replacement what is the probability that the two balls are red? (8 mks)

 

  1. A Kenyan businessman goes on a trip to West Germany through Italy and back to Kenya. In Kenya he is allowed to take Ksh. 67,000 for sales promotion abroad. He converts the Kenya currency into US dollars. While in Italy, he converts 2/5 of his dollars into Italian lire, which he spends in Italy. While in West Germany, he converts 5/8 of the remaining dollars into Deutsche marks which he uses up before coming to Kenya. Using the conversion rates 1 US dollar = 1.8 Deutsche marks = 16.75

Ksh = 1340 Italian lire. Answer the following questions:

  • How many US dollars did he take out of Kenya?
  • How many Italian lire did he spend in Italy?
  • How much money, in Deutsche marks did he spend in West Germany?
  • How much money in Ksh. did he have on his return to Kenya? (8 mks)

 

  1. PQRS is a parallelogram in which PQ = r and PS = h. Point A is the midpoint of QR and B is a point on PS such that PS : PB = 4:3. PA and QB intersect at M.

 

 

 

 

 

 

 

 

 

 

Given that PM = kPA and BM = tBQ where k and t are scalars, express PM in two different ways and hence find the values of k and t.

Express PM in terms of r and h only.                                                                                   (8 mks)

 

 

 

 

 

 

 

 

  1. Two variables T and X are connected by the equation T = abx where a and b are constants. The values of T and X are given in the table below:

 

T 6.56 17.7 47.8 129 349 941 2540 6860
X 2 3 4 5 6 7 8 9

 

 

Draw a suitable straight line graph and use it to estimate the values of a and b.              (8 mks)

 

 

MATHEMATICS III

PART II

 

Section I:   (52 Marks)

 

  1. Use mathematical tables to evaluate:

 

8.67                                                                                                                        (3 mks)

Ö 0.786 x (21.72)3

 

  1. Simplify completely. (3 mks)

4      –    1

x2 – 4        x-2

 

  1. An Indian on landing at Wilson Airport changes Re 6000 into Kenya shillings when the exchange rate is Re = Ksh. 1.25. He spent Ksh. 5000 when in Kenya and converted the remaining amount to Rupees at the same rate as before. Find out how much the Indian is left with in Rupees. (3mks)

 

  1. The last of three consecutive odd numbers is (2x+3). If their sum is 105, find the value of x. (4 mks)

 

  1. a S  b is defined by:           a S b  =  (a + b)

ab

If B S   (2  S   3)  =  4  S   1, Find B.                                                                                   (3 mks)

  1. Find the value of M. (3 mks)

 

 

M

 

850

 

1600

 

 

  1. (a) Expand (1+2x)6 upto the term containing x3 .                                                                (2 mks)

 

(b)  By putting x = 0.01, find the approximate value of (1.02)6 correct to 4 S.F.                    (2 mks)

 

 

  1. Show that x is the inverse of : Y =    3          -3      1           X =       2      1                       (3 mks)

-5        2                     5      3

 

 

 

 

 

 

  1. The probabilities of three candidates K, M and N passing an examination is 2/3, ¾ and 4/5 Find the probability that :

(a)  All pass:                                                                                                           (1 mk)

(b)  At least one fails:                                                                                              (2 mks)

 

  1. In the figure, PR is tangent to the circle centre O. If ÐBQR=300, ÐQBC=270,and ÐOBA=370, find ÐBAC and Ð

 

C                        A

 

 

 

 

B                                                                                            P                                                                                 R

  1. A frustrum of height 10cm is cut off from a cone of height 30cm. If the volume of the cone before cutting is 270cm3 , find the volume of the frustrum. (3 mks)

 

  1. Evaluate 0 (2 mks)

( 3x2 –  1 ) dx

4 x 2

1

  1. If one litre of water has a mass of 1000g, calculate the mass of water that can be held in a rectangular tank measuring 2m by 3m by 1.5m. (give your answer in tonnes). (2 mks)
  2. Write down the three inequalities which define the shaded region. (3 mks)

 

 

 

(3,2)

 

 

 

 

 

 

(2,1)                                   (4,1)

 

 

 

 

  1. The depth of sea in metres was recorded on monthly basis as follows:

 

Month March April May June July
Depth (m) 5.1 4.9 4.7 4.5 4.0

Calculate the three monthly moving averages.                                                               (3 mks)

  1. A number of women decided to raise sh. 6300 towards a rural project for bee keeping. Each woman had to contribute the same amount. Before the contribution, seven of them withdrew from the project. This meant the remaining had to pay more. If n stands for original number of women, show that the increase in contribution per woman was: 44100                   (3 mks)

n(n-7)

 

 

 

 

 

SECTION II:   (48 Marks)

 

  1. Find the distance between points A(500 S, 250 E) and B(500 S, 1400 E) in:

(i)   Km                  (ii)   nm                                                                                                (8 mks)

(take radius of earth to be 6400km, P =  3.14)

 

  1. The distance S in metres, covered by a moving particle after time t in seconds, is given by :

S  =  2t3 + 4t3– 8t + 3.

Find:

(a)  The velocity at :            (i)  t  =  2                      (ii)  t  =  3

  • The instant at which the particle is at rest. (8 mks)

 

  1. A car starts from rest and its velocity is measured every second for six seconds. (see table below).
Time (t) 0 1 2 3 4 5 6
Velocity v(ms -1) 0 12 24 35 41 45 47

 

Use trapezium rule to calculate the distance travelled between t = 1 and t = 6.                (8 mks)

 

  1. Using a pair of compass and ruler only, construct triangle ABC such that AB=9cm, BC=14cm and ÐBAC = 1200 . Draw a circle such that AB, BC and AC are tangents. What is the radius of this circle?                                                                                                                                (8 mks)
  2. The marks scored by 100 students in mathematics test is given in the table below:
Marks 10-19 20-29 30-39 40-49 50-59 60-69 70-79
No. of students 8 15 15 20 15 14 13

 

(a)  Estimate the median mark.                                                                               (2 mks)

(b) Using 44.5 as the assumed mean, calculate:-

(i)         The mean mark:                                                                                   (2 mks)

(ii)        The variance:                                                                                        (2 mks)

(iii)       The standard deviation:                                                                         (2 mks)

 

  1. (a) On the same axes, draw the graphs of : y  =  sin x  ;  y  =  cos x

y  =  cosx  +  sin X for 00 Ð X Ð 3600 .

(b)  Use your graph to deduce

(i) The amplitude

(ii) The period of the wave y = cos x + sin x.

(c) Use your graph to solve:

Cos x  = – sin x for 00 Ð X Ð 3600 .

 

  1. Given a circle of radius 3 units as shown in the diagram below with its centre at O(-1, 6). If BE and DE are tangents to the circle where E (8,2). Given further that Ð DAB = 800.

B

 

 

A                                                                              E

C

 

 

D

(a)  Write down the equation of the circle in the form ax2 + bx + cy2 + dy + e = 0 where a, b, c,             d, e are constants.                                                                                       (2 mks)

(b)  Calculate the length DE.                                                                                   (2 mks)

(c)  Calculate the value of angle BED.                                                                     (2 mks)

(d)  Calculate the value of angle DCB.                                                                     (2 mks)

 

  1. A building contractor has to move 150 tonnes of cement to a site 30km away. He has at his disposal 5 lorries. Two of the lorries have a carrying capacity of 12 tonnes each while each of the remaining can carry 7 tonnes. The cost of operating a 7 tonne lorry is sh. 15 per km and that of operating a 12 tonne lorry is sh. 25 per km. The number of trips by the bigger lorries should be more than twice that made by smaller lorries.                                                                                     (8 mks)

 

(a)  Represent all the information above as inequalities.

  • How should the contractor deploy his fleet in order to minimise the cost of moving the cement?                                                                                                                                   (8 mks)

 

 

MATHEMATICS III

PART I

MARKING SCHEME

 

 

 

 

 

 

SOLUTION MRK AWARDING  
1. Ö7.5625 = 2.75

 

3Ö3.375 = 3Ö3375 X 3Ö10-3

 

3 Ö33 x 53 x 10-1 = 3 x 5 x 10-1 = 1.5

 

= 2.75 x 1.5  =  2.75  =  0.275

1.5 x 10          10

 

1

 

1

 

1

1

1

 

 

Method for Ö7.5625

Square root

 

Method for 3Ö

3Ö

Answer

 
    5    
2. T2y  =  Ö k+y

K

T4y2k =  k+y

T4y2k – k  =  y

K(T4y2-1) =  y

K  =  y

T4y2 – 1

 

 

1

 

 

1

 

1

 

 

Removal of square root

 

Rearrangement of terms

Answer

 
    3    
3. (x 2)         x      =  (8)

-2

 

x2 – 4  =  8

 

x  =  +Ö12 = + 2Ö3 = + 3.464

 

1

 

 

1

 

1

 

 

Matrix equation

 

 

Quadratic equation

Answers in any form

 
    3    
4. r(x2 – 1)

2r(x – 1)

 

r(x2 – 1)(x2 + 1)

2r (x – 1)

 

r(x – 1)(x + 1)( x2 + 1)

2r (x – 1)

 

=   (x + 1)( x2  + 1)

2

 

 

 

 

1

 

 

 

1

 

 

1

 

 

 

 

Complete factorisation of numerator

 

Factorisation of denominator

 

Answer

 
    3    
5.       1  =  log3 3

8 – x    =   3

1+x

 

-4x  =  -5

 

x = 5

4

1

 

 

 

1

 

1

 

 

 

Logarithic expression.

 

 

Equation

 

Answer

 

 

 
    3    
6. Let the centre be (a,b)

 

4-9        =  -1      4-a

-5-b                  3-b

 

4-a  =  -4+9           -5-b  =  -3+b

a  =  4                     b  =  -1

centre is (4,-1)

 

 

 

1

 

 

1

 

1

 

 

 

 

 

Equation

 

 

Linear equations

 

Centre

 

 
    3    
7. Y  =  4x + 5

Gradient = 4

Gradient of ^ line – ¼

y + 2  =  – 1

x + 3        4

4y + x  =  -11

 

 

1

1

 

 

Gradient of ^ line.

Equation.

 

 
    2    

8.

X  = 28  =  3.5

8

 

 

standard deviation = Ö 22 = Ö2.75  =  1.658

8

 

 

1

 

 

1

1

 

1

 

Mean

 

 

d values

d2 values

 

Answer

 
    4

 

   
9. a = 203    d = 7   L = 294

 

294  =  203 + 7(n-1)

n  =  14

 

S 14  =  14 (203 +  294)

2

 

=  7 x 497

=  3479

 

1

 

1

 

 

1

 

 

 

1

 

For both a and b

Equation

 

 

For n

 

 

 

Sum

 

 
    4    
10. Sin x  =  2 sin x

Cos x

 

Sin x  =  2 cosx

Sin x

 

2 cos x  =  1

cos x  =  0.5

 

x  =  600, 3000, -600

 

 

 

1

 

 

 

1

 

1

 

 

 

 

Simplification

 

 

 

Equation

 

All 3 values

 
    3    
11. (1 +-2x)4  =  1-8x + 24x2 – 32x3 + 16x4

 

(0.82)4  =  (1 + -2 x 0.09)4

x     =  0.09

(0.82)4  = 1 – 0.72 + 0.1944 – 0.023328 + 0.00119376

= 0.35226576

@  0.35227 (5 d..p)

1

 

 

1

1

 

1

 

Expansion

 

 

Value of x

All terms

 

 

Rounded

 
    4    
12.   2  =  5m – 3

m =  1

tan q  =  1                    q  =  450

 

1

1

 

 

Value of m.

Angle

 
    2    
13.  Let the number be xy

3y  =  x + 14

10y + x  =  10x + y + 36  =  9y – 9x  Þ  36

3y – x  =  14

9y – 9x  =  36

y  =  5

x  =  1

the number is 15.

 

1

1

 

1

 

 

1

 

 

1st equation

2nd equation

 

method of solving

 

Answer

 

 
   

 

S

4    
14. Let ÐAOB  =  q

  q  x  2  x   22  x  7  =  11

360              7

q  =  900

 

Area shaded  =   90 x 22 x 7 x 7 – 1 x 7 x 7

360    7                2

77 49

2     2

= 28  =  14cm2

2

 

 

 

1

 

1

 

 

1

 

 

 

 

Value of q

 

Substitution

 

 

Answer

 
    3    
15. P(WBb)  =  6 x 15 x 15

36    35   34

 

=   15

476

1

 

 

1

 

Method

 

 

Answer

 
    2    
16. Equation                                  inequality

L1    y =  x                                   y  £  x

L2    y = -2                                   y  ³ -2

L3    2y + 5x = 21                        2y + 5x < 21

1

1

1

1

 

1 mark for each inequality.

Method for obtaining L3

 

 
 

 

 

 

 

 

 

 

 

 

 

 

(i)  roots are x = -3

x = 2

(ii)  y = x2 + x-6

0 = x2 + 2x-8

y = -x + 2

roots are x = -4

x =  2

4 2

 

 

 

 

 

 

 

1

 

1

 

 

1

 

1

 

1

 

For all correct points.

1 for atleast five correct points.

 

 

 

Correct plotting.

 

Scale

 

 

Smoothness of

curve

 

Both roots

 

 

Linear equation

 

 

Both roots

 

   

 

  8  
         
18.    h     =  15

h+50     40

 

h   = 30cm

H  =  80cm

 

(a)  Volume  =  1/3 p x 40 x 40 x 80 – 1/3  p x 15 x 15 x 30

 

128000 p  –  6750 p

3               3
=   121,250p cm3

3

 

(b)   L2  =  802 + 402                      L    =  152 + 302

= 6400 + 1600                      = 225 + 900

=  8000                                   = 1125

L    =  89.44 cm                    L    =  33.54 cm

Curved surface area of bucket = p x 40 x 89.44

p x15x33.54

= 3577.6p – 503.1p

=  3074.5cm2

1

 

 

1

 

 

1

 

 

 

 

1

 

1

 

1

 

1

 

1

 

Expression

 

 

Value of H

 

 

Substitution

 

 

 

 

Volume

 

L

 

L

 

 

Substitution

 

Area

 

 
    8    
 

 

19.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     
         
 

20.

 

 

 

(i)  ÐRPQ  =  130

        ÐPQR  =  320+900+240 =  1460

ÐPRQ  =  1800 – (1460 + 130)

=  210

 

(ii)    P      =        7

sin130         sin 210

P    =   7 sin 130

Sin 210

=  4.394km

 

 

 

 

 

 

 

 

 

 

 

P                                                               T

 

(iii)    Let PR  =  q

 

q       =       7

sin 1460      sin 210

 

q     =  7 sin 1460

sin 21

q       =  10.92 km

 

sin 450  =    RT

10.92

 

RT  =  10.92 sin 450

 

= 7.72 km (2 d..p)

 

 

 

 

1

 

 

 

 

 

 

1

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

1

 

 

 

 

 

1

 

 

1

 

1

 

 

 

Fair sketch

 

 

 

 

 

 

ÐPRQ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equation

 

Method

 

 

 

Equation

 

 

 

 

 

 

Distance PR

 

 

Equation

 

RT

 

 

 

 

 
  8    
21. (a)  4x  =  9y

2(x+y)  =  y+44  Þ  2x + y  =  44

 

4x – 9y = 0

4x + 2y = 88

11y = 88

y   =  8

 

x  =  18

(b)  P(RR)  =   18  x  18   =  81

26      26      169

 

1

 

1

 

2

 

1

1

1

1

 

 

 

Equation

 

Equation

 

Method of solving

Value y

Value x

Method

Answer

 
    8    
22. (a)  67,000 Ksh  =  67,000 US dollars

16.75

= 4,000 dollars

 

(b)  2 x 4,000  =   1600 US dollars

5

1600 US dollars  =  1600 x 1340

=  2,144,000 Italian lire

(c)  Remainder  =  2400 US dollars

5  x  2400   =  1500 US dollars

8

1500 US dollars = 1500 x 1.8

= 2700 Deutche marks

(d)  Remainder  =  900 US Dollars

900 US Dollars = 900 x 16.75 Ksh.

=  15,075 Ksh.

 

1

 

1

 

1

 

1

1

 

 

1

1

1

 

 

Method

 

Answer

 

Method

 

Answer

 

For 1500

 

 

Answer

 

Method

Ksh.

 
    8    
23. PM  =  kPA

=  k(r + 1h)

2

=  kr + 1kh

2

PM  =  PB +  BM

3h + t BQ

4

=   3h + t(-3h + r)

4          4

 

3h – 3t h + tr

4     4

3 –   3t    h + tr

4     4

 

t = k           33t  =  1k

4   4       2

33t = 1 t

4    4     2

5t  =   3

4       4

t  =  3 + 4

4    5

= 3

5

\   k = 3

5

\   PM  =  3r  +  3h

5       10

 

 

 

1

 

1

 

 

1

 

 

1

 

1

 

 

1

 

1

1

 

 

 

 

 

PM

 

PM

 

 

PM simplified

 

 

 

 

 

 

 

Both equations

 

method

 

 

 

 

Value of k

 

Value k

PM

 

 
    8    
         
 

 

 

24.

Y

LogT

 

 

 

Log T  =  log a + x log b

Log T  Þ  0.82, 1.25, 1.68, 2.11, 2.54, 2.97, 3.40, 3.84

 

y – intercept = log a = 0

a = 1

gradient  =  3.84 – 0.82  =   3.02

9 – 2                  7

= 0.4315

 

log b = 0.4315   =  0.4315

b = antilog 0.4315

b  =  2.7

 

1
1

 

 

 

 

 

 

 

1

2

 

1

 

1

 

 

 

 

1

8

Plotting
Labeling of axis

 

 

 

 

Linear

All correct logs

 

Value of a

Method of gradient

 

Value of  b

 

MATHEMATICS III

PART II

MARKING SCHEME

 

  1. SOLUTION MARKS    AWARDING
1.    No                                      log

 

8.69                                   0.9390

0.786                                 1.8954

21.72                                 1.3369

1.2323

1.7067 – 2

 

21.7067

2           2

– 1  +  0.8533

0.7134 x 10 -1     =  0.07134

 

 

 

 

 

M1

 

 

M1

 

 

 

A1

 

 

ü reading to 4 s.f

 

 

 

 

 

 

Rearranging

    3  
2.  

 4                   –         1

(x-2)(x+2)                  (x-2)

 

 – x+2

(x-2(x+2)

– (x-2)

(x-2(x+2)

 

-1

x+2

 

 

 

M1

 

 

M1

 

 

A1

 

 

 
    3  
3.  

Re6000  =  Ksh. 75000

Spent 5000 Rem 2500

Rem    2500

1.25

Re 2000

M1

 

 

M1

 

A1

 

 
    3  
4. 2x – 1  ,  2z + 1  ,  2x + 3

6x +  3  =  105

6x  =  102

x  =  17

M1

M1

A1

A1

 

Allow M1 for us of different variable.
    4  
5.  

4 * 1  =  5

4

2 * 3  =  5

6

A * 5  =  5

6      4

A + 5  =  5  x  5A

6      4       6

A +  5  =  25 A

6       24

A   =  20

 

 

M1

 

 

 

 

M1

 

 

A1

3

 
6.  

 

 

 

 

180 – M + 20 + 95  =  180

295  –  M  =  180

– M  =  – 115

M  =  115

 

 

 

B1

 

 

B1

 

 

A1

 

 
    3  
 

7.

 

1 + 2x + 60x2 + 160x3 +

1 + 0.2 + 0.006 + 0.00016

=  1.20616

=  1.206

 

M1

M1

M1

A1

4

 

Only upto term in x3.

Correct substitution

 

Only 4 s.f.

 

8.  

3   -1      2    1    =    I

-5   2       5    3

 

6   -5             3    -3

-10 +10         -5 + 6

 

1      0

0       1

 

 

M1

 

M1

 

 

A1

 

 

Matrix multiplication gives :

 

I       1   0

0   1

  3  
9. (a)   2  x  3  x  4      =  2

3      4      5           5

(b)

2  x  3  x 1     +     2  x  1  x  4     +     1  x  3  x  4
3      4     5            3      2      5             3      4      5

 

1  +  4  +  1

10     15     5

 

=     17

10

M1

 

 

M1

 

 

 

 

A1

 

 

 
    3  
10. ÐQCB  =  300

180 – (27 + 30)  =  1230

\     BAC  =  570.

 

 

 

 

OBA  =  370

OAB  =  370

 

 

AOB  =  1060

\ ACB  =  530

 

 

 

M1

 

 

 

 

 

M1

 

 

A1

 

 

 

 

 

 

 

 

 

Isosceles triangle.

 

Angle at centre is twice angle at circumference.

    3  
11. V  =  1  x  3.14  x  r 2  x 10  =  270

L.S.F.      20   =  2

30       3

V.S.F  =    2   3        =     8

3                   27

Vol. of cone  =  8  x  270

27               =      80cm3

\ Vol. Of frusturm  = (270 – 80)  =  190cm3

 

 

 

M1

 

M1

 

 

A1

 

 
    2  
12.

 

 

 

 

 

 

 

 

3x 3  –  x  -1          2

3       -1         1

 

x 3  +  1     2

x     1

 

8  +  1     –   ( 1  –  1)

2

8 1  –  2     =         6  1

2                           2

 

 

 

 

 

 

M1

 

 

 

A1

2

 
13. (2 x 3 x 1.5)  volume

9 m3

1L  º  1000 cm3

1000 L  =  1 m3

9000 L  =  9 m3

1000 L  =  1 tonne

9000 L  =  9 tonnes.

 

 

M1

 

 

 

A1

 

 
    2  
14.      y   ³ 1            (i)

y   <  x – 1     (ii)

y   <  5 – x     (iii)

 

B1

B1

 

 
    3  
15. M1  =  5.1  +  4.9  +  4.7  =  4.9

3

M2  =  4.9 + 4.7 + 4.5  =  4.7

3

M3  =  4.7 + 4.5 + 4.0  =  4.4

3

M1

M1

M1

 

 

 
    3  
16. Original contribution per woman  =  6300

N

Contribution when 7 withdraw  =  6300

(n-7)

Increase   –  Diff.

6300   –   6300

n-7          n

6300n  –  6300(n-7)

n(n-7)

6300n – 6300 + 44100

n(n-7)

44100

n(n-7)

 

 

 

M1

 

 

M1

 

1

3

 
SECTION II (48 Marks)

 

17. (i)

1150

 

A                                B

 

Centre of circles of latitude 500 S.  R Cos 500

AB  =  115  x  2p R Cos 50o

115  x  40192  x  0.6428

360

=  8252.98  km

 

(ii)   Arc AB 60 x 115  Cos 50 nm

60 x 115 x 0.6428 nm

4435 nm

 

 

 

 

 

M1

M1

 

 

M1

 

A1

 

M1

M1

M1

A1

 

 

 

 

 

 

 

No.                     log

60                      1.7782

1+5                    2.0607

0.6428               1.8080

4435nm             3.6469

    8  
18. (a)  V  =  ds  =  6t2 + 8t – 8

dt

(i)  t  =  2

V  =  6×4 + 8×2 – 8

= 32 ms-1

(ii)  t  =  3

V =  6×9 + 8×3 – 8

= 70ms-1

 

(b)  Particle is at rest when V = 0

6t2 + 8t – 8 = 0

2(3t – 2) (t+2) = 0

t  =  2                   t  =  -2

3

particle is at rest at t = 2 seconds

3

   

 

 

 

 

 

 

 

 

 

 

 

Do not accept t = -2. Must be stated.

    8  
19. Area under velocity – time.

graph  gives distance.

 

A  = { h ½  (y1 + y6 ) + y2 + y3 + y4 + y5 )}

 

= 1 { ½ ( 12+47) + 24 + 35 + 41 + 45)}

=  29.5 + 14.5

=  174.5m

 

 

B1

B1

M1

M1

B1

B1

A1

 

Trapezium rule only accepted.

Formula.

 

Substitution into formular.

    8  
20.                  Drawing actual

Scale 1cm  =  2cm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Radius      1cm

=  2cm

 

M1

 

M1

 

M1

 

M1

 

M1

M1

 

M1

M1

 

 

Bisect ÐA

 

Bisect Ð B

 

Intersection at centre of inscribed circle.

Draw circle.

 

Measure radius.

Arcs must be clearly shown.

  8  
 

 

 

21.

 

 

 

 

mean = 44.5 +  130

100

=  44.5  +  1.3

=  45.8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)  Variance  S (x – A) 2  =  2800

Sf               100

= 28

S.D.  =  Ö 28  =  5.292

 

 

 

 

M1

 

 

 

 

 

A1

 

M1

 

A1

M1

A1

 

 
    8  
 

 

 

 

 

22.

y = sin x

x    0        60        120        180     240      30      360

sin x 0    0.866     0.866      0     -0.866   -0.866    0

y = cos x

x     q        60        120        180     240    300  360

cos x 1     0.5       -0.5       -1.0     -0.5     0.5   1.0

y = cosx + sinx

x            q        60       120        180     240      30     360

cosx + sinx 1  1.366   0.366       -1   -1.366  -0.366 1.0

(c)      Cos x = – sin x

x  =  450 , 2250

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(i)  amplitude   =  1.366

(ii)  Period  =  3000

 

 

 

(a)  (x+1) 2  +  (y-6)2  =  32

x2 + 2x + 1 + y2 – 12y + 36  =  9

x2 + 2x + y2 – 12y + 28  =  0

 

(b)  cos 10  =  OD             DE  =  3

DE                   0.9848

DE  =  3.046

 

(c)  Twice ÐOED

100 x 2  =  200

 

(d)  DAB  =  800

\ DCB  =  1000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M1

 

A1

 

M1

A1

 

 

M1

A1

 

M1

A1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Formular

(x-a)2 + (y-b)2 = r2

 

 

 

 

 

 

 

 

 

Cyclic quad.

 

 

    8  
24. Let number of trips by 12 tonne lorry be x.

Let number of trips by 7 tonne lorry be y.

 

(a)   x > 0  ;  y > 0

24x + 21y  £  150

 

12 x 25 x X + 15 x 7 x y £ 1200

300x + 105y  £  1200

x > 2y

 

(b)  Ref. Graph paper.

Minimising:

3 – 12 tonne lorry and 2 – 7 tonne lorries should be deployed.

 

 

 

B1

 

 

 

B1

B1

 

 

 

 

 

 

 

MATHEMATICS IV

PART I

 

SECTION 1 (52MKS)

 

  1. Evaluate using logarithms 3Ö7.673 – 15.612

12.3                                                              (4mks)

 

  1. Solve x   –  3x  –  7    =  x – 2                                                                                   (3mks)

3            5             5

 

  1. In the given figure CD is parallel to BAC, calculate the values of x and y. (3mks)

 

 

C                                       D

 

 

 

 

 

 

B                                                A

 

  1. The surface area and volume of a sphere are given by the formulars S = 4pr2 and V= 4/3 pr3.

Express V in terms of S only.                                                                                (3mks)

 

  1. A line perpendicular to y = 3-4x passes through (5,2) and intercepts y axis at (0,k)

Find the value of K.                                                                                              (3mks)

 

  1. An alloy is made up of metals P,Q,R, mixed in the ratio 4:1: 5: A blacksmith wants to make 800g of the

alloy. He can only get metal P from a metallic ore which contains 20% of it. How many Kgs of the ore

does he need.                                                                                                           (3mks)

 

 

  1. The co-ordinate of point A  is (2,8) vector AB =   5    and vector BC  =  4   Find the

-2                                 3

co-ordinate of point C.                                                                                             3mks)

 

  1. Two buildings are on a flat horizontal ground. The angle of elevation from the top of the shorter building to the top of the taller is 200 and the angle of depression from the top of the top of the shorter building to the bottom of the taller is 300. If the taller building is 80m, how far apart are they

(4mks)

  1. The given figure is a quadrant of a piece of paper from a circle of radius 50cm. It is folded along AB

and AC to form a cone . Calculate the height of the cone formed.

(4mks)

 

 

 

 

5Ocm

 

 

50cm

 

 

  1. Express 3.023 as a fraction                                                                                      (2mks)
  2. Point A (1,9), Point B(3,5) and C (7,-3). Prove vectorically that A,B and C are collinear.       (4mks)
  3. A salesman gets a commission of 4% on sales of upto shs 200,000 and an additional 2% on

sales above this. If in January he got shs 12,200 as commission, what were his total sales    (4mks)

  1. Water flows through a cylindrical pipe of diameter 3.5cm at the rate of 2m/s. How long to the nearest minute does it take to fill a spherical tank of radius 1.4m to the nearest minute? (4mks)
  2. Rationalize the denominator in Ö3

Ö 7 – 2

Leaving your answer in the form Öa + Öb

C

Where a ,b, and c are integers                                                                              (3mks)

  1. For positive values of x, write the integral solutions of 3£ x2  £  35                 (4mks)
  2. 8 girls working 5 hours a day take 12 days to drain a pool. How long will 6 girls working 8 hours a day take to drain the pool?( Rate of work is equal) (2mks)

 

SECTION II  (48 mks)

 

  1. In the given circle centre O , A,E,F, is target to the circle at E. Angle FED = 300  <DEC = 200 and  <BC0  = 150

 

 

 

 

A                                                                       F

 

 

 

 

Calculate   (i) <CBE                                                                                              (3mks)

(ii)  <BEA                                                                                            (2mks)

(iii) <EAB                                                                                            (3mks)

 

  1. The sum of the 2nd and third terms of a G.P is 9/4 If the first term is  3,

(a) Write down the first 4 terms of the sequence .                                              (5mks)

(b) Find the sum of the first 5 terms using positive values of the common ratio (r)

(3mks)

  1. E and F are quantities related by a law of the form E = KFn Where k and n are

constants. In an experiment , the following values of E and F were obtained .

 

E 2 4 6 8
F 16.1 127.8 431.9 1024

 

Use graphical method to determine the value of k and n (Graph paper provided)      (8mks)

 

  1. In the domain –2 £ x £ 4 draw the graph of y = 3x2 + 1 –2x .Use  your graph to solve the equation.  6x2 4x + 4 = 0 (graph paper provided)                                                                 (8mks)
  2. A solid sphere of radius 18cm is to be made from a melted copper wire of radius 0.4mm . Calculate the length of wire in metres required to make the sphere.                                       (5mks)

(b) If the density of the wire is 5g/cm3. Calculate the mass of the sphere in kg.        (3mks)

 

  1. A right cone with slant  height of 15cm and base radius 9cm has a smaller cone of height 6cm chopped off to form a frustum. Find the volume of the frustum formed                    (8mks)

 

 

 

 

 

 

 

 

9cm

 

  1. PQRS are vertices of a rectangle centre. Given that P(5,0) and Q and R lie on the line x+5 = 2y, determine

(a) The co-ordinates of Q,R,S,                                                                                                   (6mks)

(b) Find the equation of the diagonal SQ                                                                                     (2mks)

  1. A tap A takes 3 hours to fill a tank. Tap B takes 5 hours to fill the same tank. A drain tap C takes 4 hours to drain the tank. The three taps were turned on when the tank was empty for 1½ hours. Tap A is then closed. Find how long it takes to drain the tank.

(8mks)

 

 

 

 

 

 

 

 

MATHEMATICS IV

PART II

 

SECTION   I  (52MKS)

 

  1. Without using mathematical tables, evaluate                                                                    (3mks)

 

Ö 0.0784 x 0.27                                              (leave your answer in standard form)

0.1875

 

  1. A father is three times as old as his son. In ten years time , the son will be half as old as the father . How

old are they now?                                                                                                                                      (3mks)

 

  1. A,B,C,D, is a parallelogram diagram. ADE is an equilateral triangle. AB and CD are 3cm apart.

AB = 5cm. Calculate the perimeter of the trapezium ABCE                                               (3mks)

 

E                            D                                    C

A                                   B

  1. Given that a = -2, b = 3 and c = -1, Find the value of   a3 – b – 2c2                                    (2mks)

2b2 – 3a2c

 

  1. The exchange rate in January 2000 was US $ 1 = Ksh 75.60. and UK £1 = Ksh 115.80.    A tourist  came to Kenya with US $ 5000 and out of it spent ksh.189,000. He changed   the balance in UK £ . How many pounds did he receive?                                                                                                   (4mks)

 

  1. ABC is a cross – section of a metal bar of uniform cross section 3m long. AB = 8cm and  AC = 5cm.

Angle BAC = 600 . Calculate the total surface area of the bar in M2.                                     (4mks)

 

  1. The bearing of a school chapel C, from administration block A, is 2500 and 200m  apart.

School flag F is 150m away from C and on a bearing of 0200. Calculate the distance and

bearing of A from F.                                                                                                               (5mks)

  1. A box has 9 black balls and some white balls identical except in colour. The probability of picking a white ball is 2/3

(i) Find the number of red balls                                                                                       (2mks)

(ii) If  2  balls are chosen at random without replacement, find the probability that they are of different colour.                                                                                                                          (2mks)

  1. Under an enlargement of linear scale factor 7, the area of a circle becomes 441.p

Determine the radius of the original circle.                                                              (3mks)

  1. A circle has radius 14cm to the nearest cm . Determine the limits of its area.                     ( 3mks)
  2. Expand (1 + 2x)5 up to the term with x3. Hence evaluate 2.045 to the nearest 3 s.f. (4mks)
  3. The nth term of a  G.P is given by  5 x 2 n-2

(i) Write  down the first 3 terms of the G.P                                                                (1mk)

(ii) Calculate the sum of the first 5 terms                                                                            (2mks)

  1. 3 bells ring at intervals of 12min, 18min and 30min respectively. If they rang together at 11.55am, when will they ring together again.                                                         (3mks)
  2. On a map scale 1:20,000 a rectangular piece of land measures 5cm by 8cm. Calculate its actual area in hectares.                                                                                                                                      (3mks)
  3. It costs Maina shs. 13 to buy 3 pencils and 2 rubbers; while Mutiso spent shs.9 to buy one pencil and 2 rubbers. Calculate the cost of a pencil and one rubber                      (3mks)

 

  1. Three angles of a pentagon are 1100, 1000 and 1300. The other two are 2x and 3x respectively. Find their values .                                                              (2mks)

 

SECTION II (48MKS)

 

  1. Members of a youth club decided to contribute shs 180,000 to start a company. Two members withdrew their membership and each of the remaining member had to pay shs. 24,000 more to meet the same expense. How many members remained? (8mks)
  2. A box contains 5 blue and 8 white balls all similar . 3 balls are picked at once. What is the probability that

(a)  The three are white                                                                                         (2mks)

(b)  At least two are blue                                                                                                    (3mks)

(c) Two are white and one is blue                                                                                         (3mks)

 

  1. A rectangular tennis court is 10.5m long and 6m wide. Square tiles of 30cm are fitted on the floor.

(a) Calculate the number of tiles needed.                                                                             (2mks)

(b) Tiles needed for 15 such rooms are packed in cartons containing 20 tiles. How many cartons are

there in total?                                                                                                                 (2mks)

(c)  Each carton costs shs. 800. He spends shs. 100 to transport  each 5 cartons. How  much would one

sell each carton to make 20% profit ?                                                                             (4mks)

  1. The following was Kenya`s income tax table in 1988.

Income in K£ P.a             Rate (Ksh) £

1          –   2100                  2

2101    –   4200                  3

4201     –  6303                  5

6301     –  8400                  7

 

(a) Maina earns £ 1800 P.a. How much tax does he pay?                                         (2mks)

(b) Okoth is housed by his employer and therefore 15% is added to salary to make  taxable income. He

pays nominal rent of Sh.100 p.m His total tax relief is Shs.450. If he earns K£3600 P.a, how much

tax does he pay?                                                                                              (6mks)

  1. In the given figure, OA = a , OB =b,  OP: PA =3:2,  OQ:QB = 3:2

Q

B
R

O                                                                            A

(a) Write in terms of a and b vector PQ                                                                                       (2mks)

(b) Given that AR = hAB where h is a scalar, write OR in terms h, a. and b                    (2mks)

(c) PR  =  K PQ Where K is a scalar, write OR in terms  of k, a and b                           (1mk)

(d) Calculate the value of k and h                                                                                               (3mks)

 

  1. A transformation P = and maps A(1,3) B(4,1) and C(3,3) onto A1B1C1. Find the

 

 

co-ordinates of A1B1C1 and plot ABC and A1B1C1 on the given grid.

Transformation Q maps A1B1Conto A11 (-6,2) B11(-2,3) and C11(-6,6). Find the matrix Q and plot

A11B11C11on the same grid. Describe Q fully.                                                           (8mks)

 

  1. By use of a ruler and pair of compasses only, construct triangle ABC in which AB = 6cm,

BC = 3.5cm and AC = 4.5cm. Escribe circle  centre 0 on BC to touch AB and

AC produced at P and Q respectively. Calculate the area of the circle.                       (8mks)

  1. The following were marks scored by 40 students in an examination

330       334      354     348     337     349     343    335    344    355

392       341      358     375     353     369     353    355    352    362

340       384      316     386     361     323     362    350    390    334

338       355      326     379     349     328     347    321    354    367

 

(i) Make a frequency table with intervals of 10 with the lowest class starting at 31          (2mks)

(ii) State the modal and median class                                                                         (2mks)

(iii) Calculate the mean mark using an assumed mean of 355.5                                        (4mks)

 

 

MATHEMATICS IV

PART 1

MARKING SCHEME

 

1.  

Ö –  7.939

12.3

 

=      No             log

7.939                       0.8998

12.3              1.0899

T.8099   1/3 = 3 + 2.8099                                T.9363                   3

 

=  -0.8635

B1

 

 

 

 

B

 

M1

 

A1

4

 

 Subtraction

 

 

 

 

Logs

 

Divide by 3

 

Ans

2. 5x – 3 (3x –7 )    =  3(x – 2 )

5x – 9x + 21    =   3x – 6

-7x             = -27

x              =  36/7

 

M1

M1

 

A1

3

Multiplication

Removal ( )

 

Ans

3. 3x +5y + x =  180

9x   =  180

x    =   20

y   =    60

M1

A1

B1

3

Eqn

X

B

 

 

4.  

.                               r   =       3v      1/3

4P

 

.                              r   =        S       ½

4P

 

\ 3V      1/3              =            ½

4P                                 4P

 

3V                         =       S       3/2

4P                                 4P

 

V             =       4P      S     3/2

3            4P

 

 

 

B1

 

 

 

 

 

 

 

M1

 

 

 

A1

3

 

 

 

Value r

 

 

 

 

 

 

 

Equation

 

 

 

Expression

5.

 

 

 

 

6.

Grad  line          = ¼

y – 2        = ¼

x – 5

y            =  ¼ x + ¾

k             =      ¾

P in Alloy         = 4/10  x 800

= 320g

100 x 320

20

=  3.2 kg

 

M 1

 

A1

A 1

3

 

B1

 

M1

 

A 1

 

Equation

 

Equation

K

 

 

P in alloy

 

Expression

 

Ans

 

 

 

 

7.

 

 

 

 

B (a,b) ,            C (x ,y)

.a – 2          =    5

.b – 8               -2

.a  = 8     b = 6      B(8, 6 )

x – 8          =   3

y – 6               4

x = 11,  y = 10 c(11,10)

 

 

 

 

 

B1

 

M1

 

 

A1

3

 

 

 

 

B conduct

 

Formular

 

 

C

8.  

 

 

 

 

 

80 – x

 

 

 

 

 

.h = x tan 70

h = (80 – x ) tan 60

\   x tan 70 = 80 tan 60-x tan 60

2.7475x + 1.732x = 138.6

4.4796 x       =   138.6

.h     =    138.6 x tan 60

4.4796

 

= 53.59

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1

M1

 

 

 

M1

 

A1

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Expression for  h both

Equation

 

 

 

Expression for h

 

Ans

9.                 2pr    =  90  x 2p x 50

360

r    =  12.5

h     =  Ö2500 –  156.25

=   Ö2343.75

=   48.41 cm

 

M1

P

A1

M1

 

A1

4

Equation

 

.r

expression for h

 

ans

 

 

10.

 

100 n      =   302.323

     n      =      3.023   

99n       =   299.3

n      =    2993

990

=    323/990

 

M1

 

 

A1

4

 

 

Equation

 

 

Ans

 

11. AB        =     3-1

5-9

=     2

-4

BC         =     4

-8

AB         = ½   BC

\ AB // BC

But B is common

\ A,B,C are collinear.

 

 

 

 

B1

 

 

 

 

 

B1

 

 

B1

3

 

 

A B &  BC

 

 

 

 

 

Both

 

 

Both

 

12.       4% of 200,000  = 8000/=

balance                   = 4200/=

6% of  x                 = 4200/=

x                 = 4200 x 100

6

=  70,000

sales                 =  sh. 270,000

B1

 

 

M1

A1

B1

4

 

 

Both

 

 

Expression

Extra sales

Ans

 

 

 

 

 

 

13 .

 

 

 

 

 

Time          =   22/7 x 3.5/2x 3.5/2 x 200   hrs

22/7x 140x140x 140x 3600

 

8960

3600

= 2 hrs 29min

 

 

 

 

 

M1

M1

 

M1

 

A1

4

 

 

 

 

 

 

Vol tank

Vol tank

 

Div x 3600

 

Tank

 

 

14.

 

 

 

 

 

 

 

    Ö3                      =     Ö3           Ö7 + Ö2

Ö7Ö2                         Ö2Ö2         Ö7+ Ö2

 

= Ö3 Ö7 + Ö2

5

 

= Ö21 + Ö6

5

M1

 

M1

 

A1

3

Multi

 

Expression

 

 

 

Ans

15.           3 £ x 2                   x2 £ 35

±1.732 £x                 x £ ± 5.916

1.732 £ x           £ 5.916

integral x : 2, 3, 4, 5

 

B1

B1

B1

B1

4

Lower limit

Upper limit

Range

Integral values

 

16.  No of days   =  8/6 x 5/8  x 12

=   10 days

M1

A1

2

Expression

days

17. (i)  ÐCED      =  ÐECD   = 30

Ð CDE     =  180 – 60

=  120

Ð CBE    =  180-120

=60

(ii) Ð AEC  = 90+30

= 120

Ð EAB  = 180-(120+45)

= 150

(iii) ÐBEO  = 90-45

= 45

B1

B1

B1

B1

 

B1

 

B1

B1

 

B1

8

 

 

 

 

 

 

 

ÐA EB = 450

 

ÐBEO

18.   .ar + ar2    =  9/4

3r + 3r2   =  9/4

12r2  + 12r – 9 = 0

4r2  + 3r – 3   = 0

4r2 + 6r – 2r –3 = 0

(2r – 1) (2r + 3)  = 0

r  = ½  or r   = -11/2

 

Ss      = 3(1- (1/2 )5)

1 – ½

 

= 3 (1-12/3 2)

½

= 6 ( 31/32)

= 6 31/32

 

B1

B1

 

B1

 

M1

A1

 

M1

 

 

 

M1

 

 

A1

8

 

 
19.

LOG  E.    0.3010   0.6021     0.7782     0.9031

LOG  F      1.2068   2.1065     2.6354     3.0103

 

Log E =n log F  + Log K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.n  = gradient    = 2        2.4 – 1.4   =  12  =  3

Log k.             =  0.3       0.7 – 0.3       4

.k              = 1.995

¾ 2

‹         E     =  2F 3

B1

B1

 

 

S1

 

 

P1

 

 

L1

 

 

M1

A1

 

B1

8

 

Log E

Log F

 

 

Scale

 

 

Plotting

 

 

Line

 

 

Gradient

 

 

K

 

 

 

20  

.x       -2     -1     0    1     2    3      4

.y      17      6      1    6     9  22     41

 

.y  =  3x 2  – 2x + 1    –

0       =  3x 2 – 3x – 2

y   =  x     +  3

 

 

 

 

 

 

 

B2

 

B1

 

B1

 

S1

P1

C1

 

L1

 

B1

 

8

 

 

 

All values

 

At least  5

 

Line

 

Scale

Plotting

Smooth curve

 

Line drawn

 

Value of r

 

 

21. .h          = ¾ p x 18 x 18x 18

p x 0.04 x 0.04

= 24 x 18x 18x 18

0.04   x 0.04 x 100

 

=  48,600m

 

density  = 4/3 x 22/7 x 18 x 18x 18x 15 kg

1000

= 122.2kg

M1

M1

M1

M1

 

A1

 

M1

M1

A1

8

N of wire

¸ to length in cm

¸ for length

conversing to metres

 

length

 

expression for density

conversion to kg

ans

 

 

22.  

H = Ö152 – 92

= Ö144

= 12

 

X/6  = 9/12

X    = 4.5

Volume   = 1/3 x 22/7x (81 x 12 –20.25×6 )

 

= 22/21  (972 – 121 -5)

 

=   891  cm3

 

 

M1

 

 

A1

 

M1

A1

M1

M1

M1

 

A1

8

Method

 

 

 

 

Method

Radius

Small vd

Large vol

Subtraction of vol.

 

Ans

23. R(-a , b) , Q (c,d), S(x , y) ,P (5,0)

PR is  diagonal

(a)    Mid point  PR  (0,0)

a + 5    = 0

2

.a         =   -5

b- 0     =   0

2
b = 0

R (-5,0)

Grad  PQ   = -2

Grad RS   = -2

.d – 0   =  -2

c –5

.d – 0      = ½

c+5

.d+ 2c     = 10

2d – c     = 5×2         –

4d – 2c   = 10

5d         = 20

d         = 4

c         = 3

Q (3, 4)

x + 3  ,    y+4   =  (0,0)

2           2

x  =  -3 , y = -4   \ s(-3 -4)

 

(b) y – 4   =   8

x – 3        6

3y  = 8x – 12

 

 

 

 

 

 

 

B1

 

 

 

M1

 

 

 

 

M1

 

 

 

 

A1

 

M1

A1

 

M1

 

A1

8

 

 

 

 

 

 

 

Ans .

 

 

 

Expression both correct

 

 

 

Equation

 

 

 

 

Ans

 

 

 

 

Expression

 

Equation

 

       

MATHEMATICS IV

PART II

MARKING SCHEME

 

 

1.                784 X 27        =

187500

Ö 784 x 9           =    4 x 7x 3

62500                      250

=       42

125

=       0.336

 

 

 

M1

 

M1

 

 

A1

 

 

 

Factors for

Fraction or equivalent

 

C.A.O

    3  
2.      Father 3x ,  r son  = x

2(x +10)        = 3x + 10

2x +20       =  3x + 10

x        = 10

father            = 30

M1

 

 

A1

B1

 

Expression

 

 

 

 

 

 

    3  
3. 3   = sin   60

AE

AE  = 3

Sin 60

= 3.464

perimeter  = 5×2 + 3.464 x 3

= 10+10.393

= 20.39

M1

 

 

 

A1

 

 

B1

Side of a triangle

 

 

 

 

 

 

Perimeter

    3  
4.    .a3 – b-2c2  =  (-2)3 – 3 –2(-1)2

2b2 – 3a2c      2(3)2 –3(-2)2(-1)

= -8 –3-2

18 + 12

= -13

30

M1

 

 

M1

 

A1

Substitution

 

 

Signs

 

C.A.O

    3  
5.        Ksh  189,000          =   $ 189,000

75.6

= $ 2500

balance                    = $ 2500

=  Kshs. 189,000

Kshs. 189,000          =             189,000

115.8

Uk    ₤1632

M1

 

A1

 

M1

A1

 

A1

4

 

Conversion

 

 

 

Conversion

 

6. Area of 2 triangles  =   2 (½ x 8x 5 sin 60)

=   40 sin 60

=   40x 0.8660

= 34.64 cm2

Area of rectangle    = 300 x 8 + 300 x 5 +300 x BC

BC              = Ö64 +25 – 2 x 40cos 60

= Ö89 – 80 x 0.5

= Ö89 – 40

= Ö49

= 7

Total   S.A.              = 300 (8+5+7) + 34.64 cm2

= 6000 + 34.64

= 6034.64 cm2

M1

 

 

 

 

M1

 

 

 

 

M1

 

A1

Areas of D

 

 

 

 

B.C. expression

 

 

 

 

Area

 

    4  
7.    AF2    = 32+42+-2+12x cos 50

= 25 – 24 x 0.6428

= 25-15.43

= 9.57

AF      =  3.094 x 50

AF      =  154.7m

Sin Q  =  200 sin 50o

154.7

= 0.9904

Q   = 82.040

Bearing = 117.96

M1

 

 

 

 

A1

M1

 

 

A1

B1

 

 

 

 

 

 

 

 

 

 

 

Bearing

    5  
8. (i)  No. of white  = w

w       = 2

w+9         3

3w       = 2w + 18

w      =  18

(ii)  p(different colour )  = p(WB N  BW)

= 2   x   9   + 918

3      25     27    25

= 12/25

M1

 

 

 

 

A1

M1

 

A1

 
    4  
9. A.sf                =  1

49

smaller area       = 1 x 441 p

49

=  9p

pr2          = 9p

r2         =  9

r           = 3

 

 

 

M1

 

M1

 

 

A1

 

 
    3  
10.  Largest area         = 22 x (14.5)2

7

=  660.8 cm 2

smallest area          =  22/7 x (13.5)2

= 572.8

572.8    £ A  £ 660.81

M1

 

 

M1

 

A1

 
    3  
11. (1 +2 x)5  =  1 + 5 (2x) + 10 (2x)2 + 10 (2x)3

=  1 + 10x   + 40x2  + 80x3

2.0455    =   1+2 (0.52)5

= 1+10 (0.52)+ 40(0.52)2+80(0.52)3

= 1+5.2 + 10.82 + 11.25

= 28.27

M1

A1

 

M1

 

A1

 
    4  
12.          Tn           =  5x 2n –2

(i)               T1 , T2, T3 = 2.5, 5, 10

(ii)                      S5      =  2.5(25-1)

2-1

= 2.5 (31)

= 77.5

 

B1

M1

 

 

A1

 

All terms

 

    3  
13. 12         = 22 x 3

18         = 2 x 32

30         = 2x3x5

Lcm         = 22 x 32x 5 = 180 min

=  3hrs

time they ring together =11.55 +3 = 2.55 p.m

M1

 

 

 

A1

B1

 
    3  
14.  Map area      = 40cm 2

Actual area   =  200x200x40m2

= 200x200x40ha

100×100

= 320ha

M1

M1

 

 

A1

Area in m2

Area in ha

 

 

CAO

    3  
15.     3p + 2r    = 13

p + 2r    =   9  –

2p           =   4

p     = sh 2

r     = 3.50

M1

 

 

A1

B1

 
    3  
16. 110 + 100+130+2x +3x = 540

5x  = 200

x  = 400

2x , 3x     = 80 and 1200 res

M1

 

A A1

2

 
17. Contribution / person    = 180,000

X

New contribution    = 180,000

x – 2

180,000   – 180,000  = 24,000

x –2               x

180,000x – 180,000x +360,000 = 24,000(x-2)x

24,000x2  –  48,000x – 360,000 =0

x2  – 2x – 15 = 0

x2 – 5x + 3x – 15 = 0

x (x – 5)+ 3 (x – 5) = 0

(x + 3 )(x – 5)  = 0

x     = -3

or     = 5

remaining members            = 5-2

= 3

B1

 

B1

 

M1

M1

 

 

A1

M1

 

 

A1

 

B1

 

‘C’

 

 

 

eqn

mult

 

 

eqn

factor

 

 

both ans

 

remaining members

    8  
18. (a) P (3 white)         =  8   x  7  x   28

13      12     11    143

(b) P(at least 2 blue)=p(WBBorBBWorBWB)orBBB

= 8  x   5  x   4   +  5  x   4  x  8

13     12     11      13     12    11

+ 5  x   8  x   4 +   8 x   7 x   6

13     12     11    13     12    11

= 204

429

= 68

143

(c) p(2 white and one blue )= p(WWB or WBW or BWW)

= 8  x  7  x  5  +  8  x  57  +  587

13     12    11   13     12   11   13    12   11

= 3 x 8 x 7 x 5

13 x 12 x 11

 

=  70

143

M1

A1

 

 

M1

 

M1

 

 

 

A1

 

 

 

M1

M1

 

 

 

A1

 

 
    8  
19. (a) recourt area    =  10.5 x 6  m2

title  area       =    0.3 x 0.3 m2

No of tiles     =    10.5 x 6

0.3 x 0.3

=  700

(b) No of cartons = 700 x 15

20

= 52.5

 

(c) Cost of 525 cartons  =   525 x 100 + 800 x 525

+ transport                        5

=  10,500+420,000

=   430,500

sale price                  =  120 x 4.30,500

100

=  sh    516,600

s.p of a carton            =  516,600

525

= sh. 984

 

 

M1

A1

 

M1

 

A1

 

 

 

B1

 

M1

 

 

M1

 

A1

 

 

 
    8  
20. (a) Maina`s tax dues       = 1800 x 10

100

=        180

(b) Taxable income        = 3600 x 115 – n rent

100

= 36 x 115 – 100 x 12

20

= 4140 – 60

=         4080

Tax dues                         = 10    x 2100  + 15  x 1980

100                 100

= 210 + 297

=        507

Tax  relief                      =        270-

Tax  paid                        =        237

M1

 

A1

 

 

M1

 

 

A1

M1

M1

 

A1

 

B1

 

 

 

 

 

 

 

 

 

 

1st slab

2nd slab

    8  
21.  (a)            PQ                 =  –3/5 a   +  3/1b

=  31/23/5 a

(b)             OR                 =   h a + h b

=   a – ha + hb

=  (1-h) a + h b

(c)              OR                =  3/5 a   + k (31/2 b – 3/5a)

=  (3/53/5k)a +3k b

(d)                      1 – h     =  3/53/5k    (i)

3k    =  h                   (ii)

Sub (i)              1 – 3k    =  3/53/5k

5- 15k    =  3-3k

12k    =  2

k    =   1/6

h     =  ½

 

 

B1

 

M1

A1

M1

A1

 

 

M1

 

 

A1

B1

 
     

8

 
 

22.

 

P(ABC) =     0  – 1      1  4  3      =  -3  -1  -3

1    0      3  1  3            1   4   3

A1 (-3,1)B1 (-1,4)C1(-3,3)

Q(A1B1C1) =  a  b    -3 –1 -3    =        -6 –2 –6

c d       1   4  3                2   8   6

 

=> -3a + b =  -6                -3c + d = 2

-a + 4b   =  -2 x 3         -c + 4d = 8 x 3

– 3a  + 12b = -6              – 3c + 12d = 24

11b  = 0                     -11d  = -22

b = 0                           d = 2

a = 2                           d = 2

c  = 0

Q =    2     0

0       2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M1

A1

 

 

M1

 

 

M1

 

 

 

 

 

A1

 

 

 

B1

 

 

 

 

B1

 

 

 

B1

 

 

A1 B1 C1

 

 

 

 

 

 

 

 

 

 

 

L Q

 

 

 

A1 B1 C1 drawn

 

 

 

 

All BII CII

Ploted

 

 

 

 

Destruction

 

 

 

    8  
23.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24.

R     = 2.2CM ± 0.1

Area = 22 x  2.2 x 2-2

7

= 15.21cm2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ef =40                        efd = -80

(ii) model class    = 351- 360

modern class  = 341 – 350

(iii) mean             = 355.5  – 80

40

=  355.5 – 2

=  353.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1

 

B1

 

B1

 

B1

 

B1

 

B1

 

M1

 

 

 

1

1

 

 

8

 

B1

B1

 

M1

 

 

A1

 

B1

 

B1

B1

B1

 

 
    A1  
    8  

 

 

 

MATHEMATICS V

PART I

 

SECTION 1 (52 MARKS)

 

 

 

  1. Use logarithms to evaluate 6 Cos 40   0.25
    63.4                                                                                                                                                                                                       (4mks)
  2. Solve for x in the equation (x + 3) 2 – 5 (x + 3) = 0 (2mks)
  3. In the triangle ABC, AB = C cm. AC = bcm. ÐBAD = 30o and ÐACD = 25o. Express BC in terms of b and c.                                                                                                     (3mks)
  4. Find the equation of the normal to the curve y = 5 + 3x – x3 when x = 2 in the form
    ay + bx = c                                                                                                             (4mks)
  5. Quantity P is partly constant and partly varies inversely as the square of q. q= 10 and p = 5 ½  when q =20. Write down the law relating p and q hence find p when qs is 5.            (4mks)
  6. Solve the simultaneous equation below in the domain 0  £ x £  360 and O£  y £ 360
    2 Sin x + Cos y = 3
    3 Sin x – 2 Cos y = 1                                                                (4mks)
  7. Express as single factor 2     –     x + 2         +       1
    x + 2    x2 + 3x + 2         x + 1                                       (3mks)
  8. By use of binomial theorem, expand (2 – ½ x )5 up to the third term, hence evaluate (1.96)5
    correct to 4 sf.                                                                                                        (4mks)
  9. Points A(1,4) and B (3,0) form the diameter of a circle. Determine the equation of the circle and write it in the form ay2 + bx2 + cy + dy = p where a, b, c, d and p are constants.                                                                                                                              (4mks)
  10. The third term of a GP is 2 and the sixth term is 16. Find the sum of the first 5 terms of the GP. (4mks)
  11. Make T the subject of the formulae 1       –  3m   +  2
    T2         R         N                        (3mks)
  12. Vectors, a =   2     b =   2   and   c –   6
    2              0                   4
  13. By expressing a in terms of b and c show that the three vectors are linearly dependent.                                                                                                                              (3mks)
    A cylindrical tank of base radius 2.1 m and height is a quarter full. Water starts flowing into this tank at 8.30 a.m at the rate of 0.5 litres per second. When will the tank fill up? (3mks)
  14. A piece of wood of volume 90cm3 weighs 54g. Calculate the mass in kilograms of 1.2 m3 of the wood.      (2mks)
  15. The value of a plot is now Sh 200,000. It has been appreciating at 10% p.a. Find its value 4 years ago.
    (3mks)
  16. 12 men working 8 hours a day take 10 days to pack 25 cartons. For how many hours should 8 men be

working in a day to pack 20 cartons in 18 days?                                                     (2mks)

SECTION II (48MARKS)

  1. The tax slab given below was applicable in Kenya in 1990.
    Income in p.a.                           rate in sh
    1  – 1980                                  2
    1981 – 3960                              3
    3961 – 5940                              5
    5941 – 7920                              7
    Maina earns Sh. 8100 per month and a house allowance of Sh. 2400. He is entitled to a tax relief of Sh.

800 p.m. He pays service charge of Sh 150 and contributes Sh 730 to welfare. Calculate Mwangis net

salary per month.                                                                                                    (8mks)

  1. OAB is a triangle with OA = a , OB = b. R is a point of AB. 2AR = RB. P is on OB such that
    3OP = 2PB. OR and AP intersect at Y, OY = m OR and AY = nAP. Where m and n are scalars.    Express in terms of a and b.
    (i) OR                                                                                                                    (1mk)
    (ii)AP                                                                                                                    (1mk)

    (b) Find the ratio in which  Y divides AP                                                                (6mks)

  2. The table below gives related values of x and y for the equation y = axn where a and n are constants
X 0.5 1 2 3   10
Y 2 8 32   200 800

By plotting a suitable straight line graph on the graph provided, determine the values of a and n.

20.       Chalk box x has 2 red and 3 blue chalk pieces. Box Y has same number of red and blue

pieces. A teacher picks 2 pieces from each box. What is the probability that
(a)        They are of  the same colour.                                                                            (4mks)
(b)        At least one is blue                                                                                           (2mks)
(c)        At most 2 are red                                                                                              (2mks)

21.  Point P(50oN, 10oW) are on the earth’s surface. A plane flies from P due east on a parallel of

latitude for 6 hours at 300 knots to port Q.
(a) Determine the position of Q to the nearest degree.                                                    (3mks)
(b)  If the time at Q when the plane lands is 11.20am what time is it in P.                      (2mks)
(c) The plane leaves Q at the same speed and flies due north for 9 hours along a longitude to

airport R. Determine the position of R.                                                                       (3mks)
22.       Using a ruler a pair of compasses only, construct :
(a)        Triangle ABC in which AB = 6cm, AC = 4cm and Ð ABC = 37.5o.                                (3mks)
(b)        Construct a circle which passes through C and has line AB as tangent to the circle at A.             (3mks)
(c)        One side of AB opposite to C, construct the locus of point P such that  ÐAPB = 90o.              (2mks)
23.       A particle moves in a straight line and its distance is given by S = 10t2 – t3 + 8t where S is

distance in metres at time t in seconds.
Calculate:
(i) Maximum velocity of the motion.                                                                             (4mks)
(ii) The acceleration when t = 3 sec.                                                                              (2mks)
(iii) The time when acceleration is zero.                                                                                   (2mks)

 

 

 

  1. A rectangle ABCD has vertices A(1,1) B(3,1), C(3,2) and D(1,2). Under transformation

matrix M =   2  2   ABCD is mapped onto A1B1C1D1

1   3
under transformation M =   -1  0    A1B1C1D1 is mapped onto  A11B11C11D11. Draw on the given grid
0 –2

(a)       ABCD, A1B1C1D1 and A11B11C11D11                                                                  (4mks)
(b)        If area of ABCD is 8 square units, find area of A11B11C11D11.                              (3mks)
(c)        What single transformation matrix maps A11B11C11D11 onto A1B1C1D1               (1mk)

MATHEMATICS V

PART II

 

SECTION 1 (52 Marks)

 

  1. Evaluate without using mathematical tables (2.744 x 15 5/8)1/3                              (3mks)
  2. If 4 £ x £ 10 and 6 £ y £5, calculate the difference between highest and least
    (i) xy                                                                                                                    (2mks)
    (ii)  y/x                                                                                                                     (2mks)
  3. A 0.21 m pendulum bob swings in such a way that it is 4cm higher at the top of the swing than at the bottom. Find the length of the arc it forms.       (4mks)
  4. Matrix 1        2x   has on inverse, determine x                                                     (3mks)
    x +3      x2
  5. The school globe has radius of 28cm. An insect crawls along a latitude towards the east from A(50o, 155oE) to a point B 8cm away. Determine the position of B to the nearest degree.                                                                                                                                                 (4mks)
  6. The diagonals of triangle ABCD intersect at M. AM = BM and CM = DM. Prove that triangles ABM and CDM are Similar.       (3mks)
  7. Given that tan x = 5/12, find the value of 1  –   sinx
                                                                         Sin x + 2Cos x,   for 0 £ x £ 90           (3mks)

 

  1. Estimate by MID ORDINATE rule the area bounded by the curve y = x2 + 2, the x axis and the lines x = O and x = 5 taking intervals of 1 unit in the x. (3mks)
  2. MTX is tangent to the circle at T. AT is parallel to BC. Ð MTC = 55o and Ð XTA = 62o. Calculate Ð (3mks)
  3. Clothing index for the years 1994 to 1998 is given below.
Year 1994 1995 1996 1997 1998
Index 125 150 175 185 200

Calculate clothing index using 1995 as base year.                                                          (4mks)

  1. A2 digit number is such that the tens digit exceeds the unit by two . If the digits are reversed, the number formed is smaller than the original by 18. Find the original number. (4mks)
  2. Without using logarithm tables, evaluate log5 (2x-1) –2 + log5 4 = log5 20             (3mks)
  3. Mumia’s sugar costs Sh 52 per kg while imported sugar costs Sh. 40 per kg. In what ratio should I mix the sugar, so that a kilogram sold at Sh. 49.50 gives a profit of 10%. (4mks)
  4. The interior angles of a regular polygon are each 172o. Find the number of sides y lie polygon.                                                                                                                            (2mks)
  5. Evaluate 2x   =       2    +        3
    341       9.222                                                                           (2mks)
  6. A water current of 20 knots is flowing towards 060o. A ship captain from port A intends to go to port

B   at a final speed of 40 knots. If to achieve his own aim, he has to steer his ship at a course of 350o.

Find the bearing of A from B.                                                                                (3mks)

SECTION II  (48 MARKS)

  1. 3 taps, A, B and C can each fill a tank in 50 hrs, 25 hours and 20 hours respectively. The three taps are turned on at 7.30 a.m when the tank is empty for 6 hrs then C is turned off. Tap A is turned off after four hours and 10 minutes, later. When will tap B fill the tank? (8mks)
  2. In the domain –5 £ x £ 4, draw the graph of y = x2 + x – 8. On the same axis, draw the graph of y + 2x = -2. Write down the values of x where the two graphs intersect. Write down an equation in x whose roots are the points of intersection of the above graphs. Use your graph to solve. 2x2 + 3x – 6 = 0.                                                                                            (8mks)
  3. The average weight of school girls was tabulated as below:
Weight in Kg 30 – 34 35 – 39 40 – 44 45 – 49 50 – 54 55-59 60-64
No. of Girls 4 10 8 11 8 6 3

(a) State the modal class.                                                                                           (1mk)
(b) Using an assumed mean of 47,
(i) Estimate the mean weight                                                                                (3mks)
(ii) Calculate the standard deviation.                                                                      (4mks)

 

 

 

 

 

 

 

 

 

 

  1. The table below shows values of y = a Cos (x – 15) and y = b sin (x + 30)
X 0 15 30 45 60 75 90 105 120 135 150
a Cos(x-5) 0.97       0.71 0.5       -0.5 -0.71
b sin(x+3) 1.00       2.00       1.00   0.00

(a) Determine the values of a and b                                                                               (2mks)
(b) Complete the table                                                                                                  (2mks)
(c) On the same axes draw the graphs of y = across(x – 15) and y = b sin(x + 30)            (3mks)
(d) Use your graph to solve ½ cos (x – 15) = sin(x + 30)                                                 (1mk)

21.    The diagram below is a clothing workshop. Ð ECJ = 30o AD, BC, HE, GF are vertical

walls. ABHG is horizontal floor. AB = 50m, BH = 20m,  AD=3m

 

 

 

(a) Calculate DE                                                                                                           (3mks)
(b) The angle line BF makes with plane ABHG                                                              (2mks)
(c) If one person requires minimum 6m3 of air, how many people can fit in the workshop         (3mks)

  1. To transport 100 people and 3500 kg to a wedding a company has type A vehicles which take          10 people and 200kg each and type B which take 6 people and 300kg each. They must not use more

than 16 vehicles all together.
(a)     Write down 3 inequalities in A and B which are the number of vehicles used and plot them

in a graph.                                                                                                           (3mks)
(b)     What is the smallest number of vehicles he could use.                                          (2mks)

(c)     Hire charge for type A is Sh.1000 while hire for type B is Sh.1200 per vehicle. Find the cheapest

hire charge for the whole function                                                                        (3mks)

A circle centre A has radius 8cm and circle centre B has radius 3cm. The two centres are

12cm apart. A thin  tight string is tied all round the circles to form interior common tangent. The tangents CD and EF intersect at X.

(a) Calculate AX                                                                                                           (2mks)
(b) Calculate the length of the string which goes all round the circles and forms the tangent.
(6mks)

 

  1. Airport A is 600km away form airport B and on a bearing of 330o. Wind is blowing at a speed of

40km/h from 200o. A pilot navigates his plane at an air speed of 200km/h from B to A.
(a)     Calculate the actual speed of the plane.                                                                (3mks)
(b)     What course does the pilot take to reach B?                                                          (3mks)
(c)     How long does the whole journey take?                                                                (2mks)

 

MATHEMATICS V

PART I

MARKING SCHEME

 

1 SOLUTION MKS AWARDING
  No         Log

13.6        1.1335   +

Cos 40    1.8842

1.0177   –

63.4       1.8021

1. 2156

(4 + 3.2156) 1/4

1.8039

Antilog    0.6366

 

B1

 

M1

 

 

M1

 

A1

 

Log

 

+

 

 

divide by 4

 

C.A.O

    4  
2. (x + 3) (x + 3 – 5) = 0

(x +3)b (x – 2) = 0

x = -3 or x = 2

M1

 

A1

 

Factors

 

Both answers

3 BD = C Sin 30  = 0.05

CD = b Cos 25

= 0.9063b

‹ BC = 0.9063b + 0.5 C

B1

 

B1

B1

 

BD in ratio from

 

CD in ratio form

Addition

    3  
4  Dy  = 3 – 3x2
dx
x = 2, grad = 1
9
Point (2,3)
y – 3  = 1
x – 2     9

9y – 27  = x – 2
9y – x   =  25

B1

 

B1

 

M1

 

 

A1

 

Grad equ

 

Grad of normal

 

Eqn

 

 

Eqn

 

    4  
5   700 = 100 + n
2200 = 400 + n

1500 = 300m

m = 5

n = 200

P = 5 + 200
q2
When q = 5 P = 13

M1

 

 

A1

 

 

B1

B2

Equan

 

 

Both ans

 

 

Eqn (law)

Ans (P)

    4  
 

6

 

4 Sin x + 2 cos y = 6

3 Sin x – 2 Cos y = 1
7 sin x                  = 7

Sin x            = 1

X                = 90

Cos y          = 1

Y        = 0o

 

M1

M1

 

 

A1

 

B1

 

Elim

Sub

 

 

 

 

 

7 2(x +1) – 1(x + 2) + x + 2

(x+2) (x +1)
= 2x +2 – x – 2 + x = 2

(x +2) (x + 1)

=     2x + 2

(x + 2)  (x + 1)

=     2
x + 2

M1

M1

 

 

 

A1

Use of ccm

Substitution

 

 

 

Ans

8 (-2 – ½ x)5  = 25  – 5 (2)4 ( ½ x) + 10(2)3( ½ x)2

=  32 – 40x + 20x2

= 32 – 4 (0.08) + 20 (0.08)2

= 32 – 0.32 + 0.128
= 3

M1

A1

 

M1

A1

 

 

 

 

 

    4  
9. Circle centre C = (3 +1,   0 + 4)

2                 2

C( 2, 2)

R =Ö (2 – 0)2 + (2 – 3)2

=Ö 5

(y – 2)2 + (x – 2)2 = Ö5

y2 + x2 – 4y – 4x =  8 + Ö5

B1

 

B1

 

M1

 

A1

Centre

 

Radius

 

 

 

 

    4  
10  ar2 =2,  ar5 = 16

a  = 2  \ 2 r5 = 16

r2       r2

2r3 = 16

r3 = 8

r = 2, a = ½

 

S5= ½ (1 – ( ½ )5)

½

= 1 – 1/32

= 31/32

M1

 

 

 

 

A1

 

M1

 

 

A1

 

 

 

 

 

Both

 

Sub

 

 

CAO

    4  
11 NR – 3MT2  = 2RT2

T2(2R + 3M) = NR

T2   =   NR

2R + 3m

T =  ! Ö  NR
2R + 3m

M1

 

M1

 

A1

X mult

 

72

 

ans

    3  
12  2  = m   2   + n    6

2            0           4

2 = 2m + 6n

2 = 0 + 4n

n = ½

m = – ½

\a = – ½ b + ½ c

\a b c are linearly dep

M1

 

 

 

 

A1

 

B1

 
    3  
13 Volume = 22 x 2.1 x 2.1 x 2 x ¾ m3

7

Time = 11 x 0.3 x 2.1 x 3 x 1,000,000

500 x 3600

= 11.55

= 11.33 hrs

time to fill = 8.03 pm

M1

 

 

M1

 

 

 

A1

 
    3  
14 Mass = 54   x  1.2 x 1,000,000

90              1000

= 720kg

M1

 

A1

 
    2  
15 V3 = P

P(0.9)3     = 200,000

P = 200,000

0.93

= 200,000

0.729

= Sh 274,348

M1

 

M1

 

 

 

A3

 
    3  
16 No of hours = 8 x 12 x10 x 20

8 x 18 x 25

= 19200

3600

= 5hrs, 20 min

M1

 

 

 

A1

 
    2  
17  Taxable income = 8100 + 2400

= sh. 10,500

=   ₤6300

Tax dues      = Sh 1980 x 2 + 1980 x 3 + 1980 x 5 + 3670 x 7

12

= 22320

12

= Sh 1860

net tax = 1860 – 800 p.m.

= Sh 1060

Total deduction = 1060 + 150 + 730

= 1940

Net salary = 10,500 – 1940

= Sh 8560 p.m.

B1

 

 

M1

M1

 

A1

 

B1

 

B1

 

M1

A1

Tax inc

 

 

2

2

 

 

 

net tax

 

total dedu.

    8  
18 OR = 2/3 a + 1/3b or (1/3 (2a + b)

AP = 2/5 b – a

OY = m OR = A + n (2/5b – a)

2/5m b + ma = (1 – n)a + 2/5 n b

2/5m = 2/5n
m = n

\m = 1 – m

2m = 1

m  = ½ = n

½ AP = Ay

AY:AP = 1:1

B1

B1

 

B1

M1

M1

A1

A1

 

 

B1

 

 

 

EXP, OY

Eqn

M = n

Sub

CAO

 

 

Ratio

    8  
 

19

 

 

 

 

Log y = n log x + log a

Log a = 0.9031

A = 8

Grad = 1.75 – 0.5

0.4 + 0.2

= 1.25
0.6

= 2.08

n = 2

\y = 8x2

x = 3  y = 8 x 32   = 72

y = 200           x = 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1

B1

 

 

 

B1

 

B1

B1

S1

P1

L1

 

 

 

 

Log x

Log y

 

 

 

A

 

N

Missing x and y

Scale

Points

Line

    8  
 

 

 

20

 

 

 

P (same colour) = P (XRRrr orXBB or YXX or YBB)

= ½ (2/5 x ¼ + 3/5 x 2/4)  x 2

2  +  6
20     20

=    8
20

2/5

(b) P(at least 1B) = 1 – P(non blue)

= 1 – P (XRR or YRR)

= 1 – ½ (2/5 x ¼) x 2

= 1 – 1/10

= 9/10

(c) P(at most 2 Red) = 1 – P (BB)

= 1 – ½ (3/5 x 2/4)2

= 1 – 6/20

= 14/20 or 7/10

 

 

 

M1

M1

 

M1

 

A1

 

 

M1

 

A1

M1

 

 

A1

 

 

 

Any 2

Any 2

 

Fraction

 

 

    8  
21 (a) PQ  = 1800nm

q     =     1800

60 x 0.6428

= 46.67

= 47o

Q (50oN, 37oE)

 

(b) Time diff = 47 x 4
60

= 3.08

Time at P = 9.12am

(c) QR = 2700 nm

x o   = 2700

60

= 45o

R (85oN, 133oW)

M1

 

 

 

A1

 

 

M1

 

A1

 

M1

 

 

A1

B1

 
    8  
 

 

22

   

 

 

 

B1

B1

 

B1

B1

B1

B1

B1

B1

 

 

 

 

 

Bisector of 150

Bisector 75

 

AB  AC

^ at A

Bisector AC

Circle

Ð AB

Locus P with A  B excluded

    8  
24                           A1B1 C1D1

2  2  1 3 3 1   =  4  8 10 6

1  3  1 1 2 2       4  6  9  7

 

A11 B11 C11  D11

-1   0     4  8 10  6       =   -4  –8   -10   -6

0 –2     4  6  9   7            -8   -12  -18  -14

 

NM =   -1  0        2  2

0 –2       1  3

 

=  -2  -2

-2   -6

 

 

(b)      det  = Asf  =  12 – 4    = 8

Area A11 B11 C11 D11  = 8 x 8

= 64  U2

(c) Single matrix = Inv N
= ½    -2 –  0

0       –1

 

=     -1     0

0       – ½

 

 

B1

 

 

B1

 

 

 

 

 

 

 

 

 

 

B1

M1

A1

 

 

 

 

B1

 

 

Product

 

 

Product

 

 

 

 

 

 

 

 

 

 

Det

 

 

 

 

 

 

Inverse

    6  
23  

Ds  = 20t  – 3t2 + 8 =0

Dt     3t2 – 20t – 8 = 0

T =  20 !  Ö400 + 4 x 3 x 8

6

t = 7.045 sec

max vel          = 148.9 – 140.9 – 8

= 0.9 m/s


d2 s
  = 6t – 20

dt2

when t = 3   a = -2m/s2

6t – 20 = 0

6t  = 20

t = 3 2/3 sec

 

 

M1

 

A1

M1

A1

M1

 

A1

M1

 

A1

 
    8  
       

 

 

 

 

 

 

 

 

MATHEMATICS V

PART II

MARKING SCHEME

 

No Solution Mks Awarding
1  2744 x 125   1/3

1000            8

 

2744  1/3  x   53     1/3

1000            23

 

23 x 73  1/3  x   5

103                         2

 

2 x 75   = 3.5

10      2

 

 

 

M1

 

 

 

 

M1

A1

 

 

 

Factor

 

 

 

 

Cube root

 

    3  
2 (i) Highest – 10 x 7.5 = 75

Lowest  – 6 x 4 =  24

51

(ii) Highest = 7.5 = 1.875

4

Lowest = 6   = 0.600

10   1.275

M1

A1

 

M1

 

A1

Highest

 

 

Fraction

 

 

    4  
3 Cos q  =  17  = 0.8095

21

 

q = Cos 0.8095

= 36.03o

 

Arc length = 72. 06 x 2 x 22 x 21

360                       7

= 26.422cm

M1

 

 

A1

 

 

M1

 

A1

 

 

 

q

    4  
4  x2 – 2x(x +3) = 0

x2 – 2x2 – 6x = 0

-x2 – 6x = 0

either x = 0

or  x = 6

M1

 

M1

 

A1

Equ

 

Factor

 

Both A

    3  
 

 

5

 

8  = x  x 2 x 22 x 28 Cos 60o

360            7

 

8 =  x    x 44 x 28 x 0.5

360         7

x =   8 x 360 x 7
        44 x 28 x 0.5

= 32.73o

= 33o

 

 

M1

 

 

 

 

M1

 

A1

B1

 

 

 

 

 

 

 

x exp

 

 

 

6

 

 

 

ÐDMC = Ð AMB vert. Opp = q

ÐMAB  = Ð MDC = 180 – q BASE Ls of an isosc. <

2
Ð MBA = Ð MAC   180 – q base angles of isos <

2

<’s AMC and < CDM are equiangle

 

\ Similar proved

 

 

 

 

B1

 

 

 

 

 

B1

 

B1

 
    3  
7 Tan x = 5/12

h = Ö b2 + 122

= Ö25 + 144

= Ö169

= 13

 

1 – Sinx               =       1 – 5

sin x + 2 Cos x      5/13 + 2 x 12/13

 

12/13      = 12 x 13  =  12

29/13          13   29      29

 

 

 

 

 

 

 

 

 

 

 

 

 

M1

M1

 

A1

 

 

 

 

 

 

 

 

 

 

 

 

 

Hypo

Sub

 

    3  
8 Y = x 2 + 2

 

 

 

 

 

Area = h (y1, = y2 +……..yn)

= 1(2.225 + 4.25 + 8.25 +14.25 + 22.25)

= 51.25 sq units

 

 

 

B1

 

 

M1

 

A1

 

 

 

Ordinals

    3  
 

9

ÐCBA = 117o

Ð ACD = 55

Ð BAC = 180 – (117 + 55) = 8o

 

 

 

 

 

 

 

 

 

 

 

 

 

B1

B1

B1

 

3

 
10  

 

 

 

B1

B1

B1

B1

1994

1996

1997

1998

    4  
11. Xy = 35

y = 35/x

9x – 9y = -18

Sub x2 + 2x – 35 = 0

x2 + 7x – 5x – 35 = 0

x (x + 7) – 5(x + 7) = 0

(x – 5) (x + 7) = 0

x  = -7

x = +5

y = 7

Smaller No.

= 57

= 75

B1

 

M1

 

 

 

 

A1

 

 

 

B1

 

 
    3  
12 Log5 (2x – 1 )4  = log552

20

4(2x – 1)  = 52

20

2x – 1 = 25

5

2x – 1 = 125

2x = 126

x = 63

M1

 

M1

 

 

 

 

 

A1

 
    3  
13 C.P = 100 x 49.50

110

= 45/-

52x + 40y = 45

x + y

45x + 45y  = 52x + 40

-7x  = -54

x/y  = 5/7

x : y = 5 : 7

 

 

B1

M1

 

 

M1

 

A1

 
    4  
14  

2n – 4 it angle = 172

n

(2n – 4) x 90 = 172n

n

90 (2n – 4) x 90 = 172

n

180 n – 360 = 172n

 

180n – 172n = 360

8n = 360

n = 45

 

M1

 

A1

 

M1

 
    2  
15 2 x = 2.    1    +    3.    1

6.341                  9.22

2x = 2 x 0. 1578 + 3 x 0.1085

= 0.3154 + 0.3254

= 0.6408

x = 0.3204

 

 

B1

 

 

A1

 

 

Tables

    2  
16 Bearing 140o

Sin q = 20 Sin 110

40

= 0.4698

= 228.02

Bearing of A from B = 198.42

 

M1

 

 

A1

B1

 
    3  
17 Points that each tap fills in one hour

 

A =  1   B  = 1       C – 1
          50         25            20

In one hour all taps can fill = 1  +  1   +  1   =  11

50    25      20     100

In 6hrs all can fill =  11  x 6 = 33 parts

100                 50

taps A and B can fill =  = 1  +  1  = 3 part in 1 hr

50    25    50

In 4 1 hrs, A and B =  25 x 3  +  1

6                           6     50     4

Parts remaining for B to fill = 1 – 33  +  = 1  – 91   = 9 parts

50         4           100    100

Time  taken =  9  x  25  hrs = 2 ¼ hrs

100          1

7.30 am

6.     hrs

13.30

  4.10

5.40pm

  2.15

  7.55 pm

 

 

 

M1

 

 

 

B1

 

 

 

 

 

B1

 

B1

 

 

 

 

 

M1

 

A1

 

 
 

 

18

 

 

 

 

 

 

 

 

 

x2 + x – 8 = -2 – 2x

y = x2 + 3x – 6

Points of intersection (-4, 1.4)

y = x2 + x – 8 = 2x2 + 3x – 6

x2 + 2x + 2

y = x2 + x – 8 x 2

2y = 2x2 + 2x – 16

0 = 2x2 + 3x – 6

2y = -x  – 10

y = – 2.6

Ny = 1.2

 

8

 

 

 

 

 

 

 

 

 

B1

B1

 

 

 

 

 

B1

 

B1

 

 

 

 

 

 

 

 

 

 

Eqn

Point of inter

 

 

 

 

 

Line eqn

 

Both

 

 

19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)    Modal class = 45 – 49

(i)               Mean = 47 + -55

50

= 47 – 1.1

= 45.9

 

(ii) Standard deviation = Ö 3575 –  –55 2
50         50

=  Ö71.5   – 1.21

=Ö 70.29

= 8.3839

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

B1

B1

 

 

 

 

M1

 

 

A1

B1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fd

fd2

    8  
20  

 

 

 

 

 

 

 

 

(a)    a =   1
b = 2

½ cos (x – 15) = Sin (x + 30)

has no solution in the domain

 

 

 

 

 

 

 

 

B1

B1

B1

 

B1

 

 

 

 

 

 

 

 

All

All

A & b

 

 

    8  
21 (a)       O Cos 30 = 20

X

X =  20

0.866

= 23.09

 

DE = Ö 502   + 23.092

= Ö 2500 + 533.36

= Ö 3033.36

= 55.076m

 

(b)       GB =  Ö 202  + 502

= 53.85

Tan q = 14.55
53.85

=  0.27019

q    = 15.12o

 

 

 

 

B1

 

M1

 

 

 

A1

 

 

M1

 

 

A1

 
  8  
  (c)       Volume of air = 50 x 20 x 3 + ½ x 20 x 11.55 x 50

= 3000 + 5775

= 8775

No. of people  =   8775
                               6

= 1462.5

j 1462

 

M1

 

M1

 

 

A1

 
    8  
22 (a)    A + B [ 16

5A + 3B ³ 50

2A + 3B [ 35

 

 

(b)   14 vehicles

 

(c)    A – 6 vehicles

B –  8

Cost = 6 x 1000 + 8 x 1200

= 6000 + 9600

= 15,600/=

 

 

B1

 

 

B1

 

B1

 

M1

 

A1

 

 

 

In equation 3

 

 

Vehicles

    8  

23

 

 

 

 

 

 

 

 

 

 

 

 

 

x        =      8

12 – x           3

 

= 8.727

FBX =    3    =  0.9166   = 23.57
3.273

 

3FBX = 47.13

 

Reflex  Ð FBD = 312.87

 

Reflex arc FD = 312.87   x 22  x 6
360           7

 

= 16.39cm

Reflex Arc CE = 312.87 x 22 x 16
360         7

 

=  43.7cm

 

FE (tangent) =  Ö144 – 121

= Ö 23

= 4.796cm

2 FE            =  9.592

 

Total length = 9.592 + 4.796 + 43.7 + 16.39

= 74.48 cm2

 

 

 

 

 

 

 

 

 

M1

 

 

A1

 

 

 

 

 

 

 

M1

 

 

A1

 

M1

 

 

A1

 

 

 

 

 

 

M1

A1

 
    8  

24

 

 

 

 

 

 

 

 

 

 

 

 

(b)         200      =    40

Sin 50       Sin q

 

Sin q =  40Sin 50
                200
= 0.7660
5
=0.1532

q         = 8.81o

Ð ACB = 180 – (50 + 8.81)o

= 121.19o

    x             =   200
Sin 121.19     Sin 50

 

= 200 x Sin 121.19
Sin 50

= 200 x 0.855645
0.7660

= 223.36Km/h

 

(b)  Course = 330o – 8.81o

= 321.19o

 

(c) Time  =    600
321.19o

 

= 2.686 hrs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M1

 

 

 

 

 

 

A1

 

 

 

M1

 

 

M1

 

 

A1

 

B1

 

 

 

M1

 

A1

 

 

8

 

 

 

DATABASES COMPUTER TEACHER NOTES- MICROSOFT ACCESS LATEST

DATABASES.

What is a Database?

  • It is a collection of information related to a particular subject or purpose.
  • A collection of related data or information grouped together under one logical structure.
  • A logical collection of related files grouped together by a series of tables as one entity.

Examples of databases.

You can create a database for;

  • Customers’ details. – Library records.
  • Personal records. – Flight schedules.
  • Employees’ records. – A music collection.
  • An Address book (or Telephone directory), where each person has the Name, Address, City & Telephone no.

 

DATABASE CONCEPTS.

 

Definition & Background.

 

A Database is a common data pool, maintained to support the various activities taking place within an organization.

 

The manipulation of database contents to yield information is by the user programs.

The database is an organized set of data items that reduces duplications of the stored files.

 

INTEGRATED FILE SYSTEMS.

 

These refer to the traditional methods of storing files, i.e., the use of paper files.  E.g., Manual & Flat files.

 

  • In Integrated file systems, several inter-independent files are maintained for the different users’ requirements.
  • The Integrated file systems have the problems of data duplication.
  • In order to carry out any file processing task(s), all the related files have to be processed.
  • Some information resulting from several files may not be available, giving the overall state of affairs of the system.

 

DATABASE MAINTENANCE.

 

A Database cannot be created fully at once.  Its creation and maintenance is a gradual and continuous procedure.  The creation & the maintenance of databases is under the influence of a set of user programs known as the Database Management Systems (DBMS).

 

Through the DBMS, users communicate their requirements to the database using Data Description Languages (DDL’s) & Data Manipulation Languages (DML’s).

 

In fact, the DBMS provide an interface between the user’s programs and the contents of the database.

 

During the creation & subsequent maintenance of the database, the DDL’s & DML’s are used to:

 

  • Add new files to the database.
  • Incorporate fields onto the existing records in the database.
  • Delete the obsolete (outdated) records.
  • Carry out adjustments on (or amend) the existing records.
  • Expand the database capacity, for it to cater for the growth in the volume for enhanced application requirements.
  • Link up all the data items in the database logically.

 

 

 

 

 

Data Dictionary.

 

All definitions of elements in the system are described in detail in a Data dictionary.

 

The elements of the system that are defined are: Dataflow, Processes, and Data stores.

 

If a database administrator wants to know the definition of a data item name or the content of a particular dataflow, the information should be available in the dictionary.

 

Notes.

 

  • Databases are used for several purposes, e.g., in Accounting – used for maintenance of the customer files within the base.
  • Database systems are installed & coordinated by a Database Administrator, who has the overall authority to establish and control data definitions and standards.
  • Database storage requires a large Direct Access storage (e.g., the disk) maintained on-line.
  • The database contents should be backed up, after every update or maintenance run, to supplement the database contents in case of loss. The backup media to be used is chosen by the organization.

 

Data Bank.

 

A Data Bank can be defined as a collection of data, usually for several users, and available to several organizations.

A Data Bank is therefore, a collection of databases.

 

Notes.

 

  • The Database is organizational, while a Data Bank is multi-organizational in use.

 

  • The Database & the Data Bank have similar construction and purpose. The only difference is that, the term Data Bank is used to describe a larger capacity base, whose contents are mostly of historical references (i.e., the Data Bank forms the basis for data or information that is usually generated periodically).  On the other hand, the contents of the Database are used frequently to generate information that influences the decisions of the concerned organization.

 

TYPES OF DATABASE MODELS.

 

  • Relational database model.

 

A Relational database is a set of data where all the items are related.

 

The data elements in a Relational database are stored or organized in tables.  A Table consists of rows & columns. Each column represents a Field, while a row represents a Record.  The records are grouped under fields.

 

~ A Relational database is flexible and easy to understand.

 

~ A Relational database system, has the ability to quickly find & bring information stored in separate tables together using queries, forms, & reports.  This means that, a data element in any one table can be related to any piece of data in another table as long as both tables share common data elements.

 

Examples of Relational database systems;

 

  • Microsoft Access.
  • FileMaker Pro.

 

  • Hierarchical database model.

 

It is a data structure where the data is organized like a family tree or an organization chart.

 

In a Hierarchical database, the records are stored in multiple levels.  Units further down the system are subordinate to the ones above.

In other words, the database has branches made up of parent and child records.  Each parent record can have multiple child records, but each child can have only one parent.

 

Components of Data hierarchy.

 

Databases (logical collection of related files).

 

 

 

Files (collection of related records).

            

Records (collection of related fields).

 

 

Fields (Facts, attributes – a set of related characters).

 

Characters (Alphabets, numbers & special characters or symbols).

  • Network database model.

 

A Network database model represents many-to-many relationships between data.  It allows a data element or record to be related to more than one other data element or record.  For example, an employee can be associated with more than one department.

 

DATA BASE MANAGEMENT SYSTEMS (DBMS).

 

  • These are programs used to store & manage files or records containing related information.

 

  • A collection of programs required to store & retrieve data from a database.

 

  • A DBMS is a tool that allows one to create, maintain, update and store the data within a database.

 

A DBMS is a complex software, which creates, expands & maintains the database, and it also provides the interface between the user and the data in the database.

 

A DBMS enables the user to create lists of information in a computer, analyse them, add new information, delete old information, and so on.  It allows users to efficiently store information in an orderly manner for quick retrieval.

 

A DBMS can also be used as a programming tool to write custom-made programs.

 

CLASSIFICATION OF DATABASE SOFTWARE.

 

Database software is generally classified into 2:

 

  1. PC-based database software (or Personal Information Managers – PIMs).
  2. Corporate-based database software.

 

PC-based database software.

 

The PC-based database programs are usually designed for individual users or small businesses.

 

They provide many general features for organizing & analyzing data.  For example, they allow users to create database files, enter data, organize that data in various ways, and also create reports.

 

They do not have strict security features, complicated backup & recovery procedures.

 

Examples of PC-based systems; 

 

* Microsoft Access.                * FoxPro.

* Dbase III Plus                      * Paradox.

 

Corporate database software.

 

They are designed for big corporations that handle large amounts of data.

Issues such as security, data integrity (reliability), backup and recovery are taken seriously to prevent loss of information.

 

Examples of Corporate-based systems;

 

 

* Oracle.                      * Informix                   * Ingress.

* Progress.                   * Sybase.                     * SQL Server.

 

Common features of a database packages.

 

  • Have facilities for Creating
  • Have facilities for Updating records or databases.

 

Using a DBMS, you can define relationships between records & files maintained in a database.  In this case, a transaction in one file of the database can also cause a series of updates in parts of other tables.  Thus, the data is input only once to the database and is made available to the many files composing it.

 

  • Have facilities for generating Reports.
  • Have a Find or Search facility that enables the user to scan through the records in the database so as to find information he/she needs.
  • Allow Sorting that enables the user to organize & arrange the records within the database.
  • Contain Query & Filter facilities that specify the information you want the database to search or sort.
  • Have a data Validating

 

FUNCTIONS OF A DATABASE MANAGEMENT SYSTEM.

 

The DBMS is a set of software, which have several functions in relation to the database as listed below:

 

  1. Creates or constructs the database contents through the Data Manipulation Languages.
  2. Interfaces (links) the user to the database contents through Data Manipulation Languages.
  3. Ensures the growth of the database contents through addition of new fields & records onto the database.
  4. Maintains the contents of the database. This involves adding new records or files into the database, modifying the already existing records & deleting of the outdated records.
  5. It helps the user to sort through the records & compile lists based on any criteria he/she would like to establish.
  6. Manages the storage space for the data within the database & keeps track of all the data in the database.
  7. It provides flexible processing methods for the contents of the database.
  8. Protects the contents of the database against all sorts of damage or misuse, e.g. illegal access.
  9. Monitors the usage of the database contents to determine the rarely used data and those that are frequently used, so that they can be made readily available, whenever need arises.
  10. It maintains a dictionary of the data within the database & manages the data descriptions in the dictionary.

 

Note.  Database Management System (DBMS) is used for database;

  • Control, and
  • Report generation.

 

ADVANTAGES OF USING A DBMS.

 

  1. Database systems can be used to store data, retrieve and generate reports.
  2. It is easy to maintain the data stored within a database.
    1. A DBMS is able to handle large amounts of data.
    2. Data is stored in an organized format, i.e. under different fieldnames.
    3. With modern equipment, data can easily be recorded.
    4. Data is quickly & easily accessed or retrieved, as it is properly organized.
    5. It helps in linking many database tables and sourcing of data from these tables.
    6. It is quite easy to update the data stored within a database.

 

A database is a collection of files grouped together by a series of tables as one entity.  These tables serve as an index for defining relationships between records and files maintained in the database.  This makes updating of the data in the related tables very easy.

 

  1. Use of a database tool reduces duplication of the stored files, and the reprocessing of the same data items. In addition, several independent files are maintained for the different user requirements.
  1. It is used to query & display records satisfying a given condition.
  2. It is easy to analyse information stored in a database & to prepare summary reports & charts.
  3. It cost saving. This results from the sharing of records, reduced processing times, reduced use of software and hardware, more efficient use of data processing personnel, and an overall improvement in the flow of data.
  4. Use of Integrated systems is greatly facilitated.

 

An Integrated system – A total system approach that unifies all the aspects of the organization.  Facilities are shared across the complete organization.

 

  1. A lot of programming time is saved because the DBMS can be used to construct & process files as well as retrieve data.
  2. Information supplied to managers is more valuable, because it is based on a widespread collection of data (instead of files, which contain only the data needed for one application).
  3. The database also maintains an extensive Inventory Control file. This file gives an account of all the parts & equipment throughout the maintenance system.  It also defines the status of each part and its location.
  4. It enables timely & accurate reporting of data to all the maintenance centres. The same data is available and distributed to everyone.
  5. The database maintains files related to any work assigned to outside service centres.

Many parts are repaired by the vendors from whom they are purchased.  A database is used to maintain data on the parts that have been shipped to vendors and those that are outstanding from the inventory.  Data relating to the guarantees and warranties of individual vendors are also stored in the database.

 

DISADVANTAGES OF DATABASES.

 

  1. A Database system requires a big size, very high cost & a lot of time to implement.
  2. A Database requires the use of a large-scale computer system.
  3. The time involved. A project of this type requires a minimum of 1 – 2 years.
  4. A large full-time staff is also required to design, program, & support the implementation of a database.
  5. The cost of the database project is a limiting factor for many organizations.

Database-oriented computer systems are not luxuries, and are undertaken when proven economically reasonable.

 

Exercise (a).

 

  1. (a). What is a database?

(b). What are Database management system software?

  1. Name and explain the THREE types of database models.        (6 marks).
  2. Explain THREE major concerns in a database system.                                        (6 marks).
  3. How are database software generally classified? Give examples of range of products in        each type of classification.
  4. State 5 features of an electronic database management system.
  5. Explain the importance of using a Database management system for storage of files in an organization.

 

Exercise (b).

 

  1. Write short notes on:
    • Database maintenance.
    • Data bank.
  2. State the components of a data hierarchy.
  3. (a). List the TWO classes of database software.

(b). Give FOUR widely used Database management systems today.

  1. Identify FIVE functions of a Database management system.
  2. Describe the advantages and disadvantages of a database.

 

Exercise (c).

 

  1. Define the following terms:
    • (4 marks)
    • Database Management System (DBMS). (4 marks).
    • Relational database.
    • Hierarchical database.
    • Network database.
  2. List and briefly describe THREE advantages of using the electronic database approach in data storage as compared to the file-based approach.
  3. List and briefly describe TWO features found in a typical Database Management System.
  4. Identify and describe three major shortcomings of the conventional file structures that are being addressed by the database approach. (6 marks).
  5. Describe the functions of the following tools found in a database management system (DBMS).
    • Data Definition Language (DDL) (2 marks).
    • Data Manipulation Languages (DML) (2 marks).
    • Data Dictionary (DD) (3 marks).

HISTORY MOKASA FORM 4 JOINT EXAMINATION QUESTIONS & MARKING SCHEME

311/2

HISTORY AND GOVERNMENT

PAPER 2

TIME: 2½ hours

MOKASA 1 JOINT EXAMINATION EXAM PLUS MARKING SCHEME

Kenya Certificate of Secondary Education

HISTORY AND GOVERNMENT

Paper 2

Section A (25 marks)

  1.      Define the term history.                                                                                (1 mark)
    • It is the study of man’s past activities/events

1 point @ 1 mark (1 mark)

  1.      Identify two methods used by archeologists to date fossils.                       (2 marks)
  •      Chemical dating like Radio Carbon (/Carbon 14 method
  •      Geological periods
  •            Statistical dating
  • Fission Track
  •      Lexico Statistics
  • Stratigraphy

Any 2 point @ 1 mark each (2 marks)

  1. Name one sub-species of Homo Sapiens.                                                     (1 mark)
  •      Cro Magnon
  •      Neanderthal man
  •            Rhodesian man

Any 1 point @ 1 mark each (1 mark)

  1.      Give two characteristics of early agriculture in Europe before the Agrarian                                                                                                            (2 marks)
  •      Small scale farming
  •      Shifting cultivation
  •            Subsistence/ peasant farming
  • Use of simple tools
  •      Broadcasting/scattering of seeds
  • Use of open field system of farming/Strip farming
  • Land belonged to the feudal land lords
  • Land was unconsolidated
  • They practiced inter cropping
  •      They practiced common grazing
  • They used human and animal labour/no machines
  • Poor breeds of crops/animals were raised

Any 2 point @ 1 mark each (2 marks)

  1.      Identify one river responsible for early agriculture in Mesopotamia.       (1 mark)
  • Tigris
  • Euphrates

Any 1 point @ 1 mark each (1 mark)

  1.      Give two shortcomings of barter trade.                                                       (2 marks)
  • Some commodities are bulky or heavy thus difficult to transport
  •      It may not be easy to establish exchange rates of commodities/value
  •            Perishable goods are likely to go to waste if negotiations are not done in time
  • It requires coincidence of demand and supply
  •      Indivisibility of some trade commodities
  • It consumes time and energy

Any 2 point @ 1 mark each (2 marks)

  1.      Give two advantages of using a motorcycle as a means of transport.       (2 marks)
  • They are cheap to acquire and maintain
  • They are flexible
  • They are readily available
  • They are convenient for short distances

 

Any 2 point @ 1 mark each (2 marks)

  1.      Identify the person who invented the first aeroplane.                                (1 mark)
  • The Wright brothers/Wilbur Wright/Orville Wright

1 point @ 1 mark (1 mark)

  1.      Name two early metals used in industrial development.                             (2 marks)
  • Iron
  • Steel
  • Bronze
  • Copper
  • Gold

Any 2 point @ 1 mark each (2 marks)

  1.      Give two advantages of metal tools over stone tools.                                (2 marks)
  •      They were durable.
  •      They could not break easily.
  •            They could be re- sharpened when blunt.
  • Molten metals could be cast into a variety of shapes with patterns and designs on            
  •      Broken objects could be re- worked.

Any 2 point @ 1 mark each (2 marks)

  1.      Identify one early urban centre in Europe.                                      (1 mark)
  • Athens
  • London

Any 1 point @ 1 mark each (1 mark)

  1.      Give the main reason for the development of Kilwa as an early urban centre.                                                                                                                                              (1 mark)

(i)        The control of Sofala gold trade

1 point @ 1 mark (1 mark)

  1.      Identify two communities that took part in the Maji Maji rebellion.        (2 marks)
  • Matumbi
  •      Pogoro
  •            Ngindo
  •     Mbunga
  •      Ngoni
  • Zaramo
  • Luguru
  • Sangu
  • Wamakonde
  •      Wamwere
  • Ndendeule
  • Bena

Any 2 point @ 1 mark each (2 marks)

  1.      Give the main reason why Europeans used scorched earth policy against African                                                                                                            (1 mark)
  • To weaken them economically, socially and politically

1 point @ 1 mark (1 mark)

  1.      Name two communes in Senegal where the policy of assimilation was applied                                                                                                         (2 marks)
  • Louis
  •      Goree
  •            Dakar
  •  Rufisque

Any 2 point @ 1 mark each (2 marks)

  1.      Name the policy adopted by France and Britain to avoid the outbreak of another       war after the First World War.                                                                    (1 mark)
  • Appeasement policy

1 point @ 1 mark (1 mark)

  1.     Identify the immediate cause of the Second World War.                           (1 mark)
  • German invasion of neutral Belgium

1 point @ 1 mark (1 mark)

Section B (45 marks)

  1.        (a)     Identify five hunting methods used by early man.               (5 marks)
  • Digging pits for them to fall into them
  • Using traps/snares
  • Chasing them and throwing weapons at them
  • Driving animals towards swampy/muddy/water bodies
  • Driving animals over cliffs
  • Using other animals like dogs
  • Chasing animals until they get tired
  • Poisoning/drugging the animals

Any 5 points @ 1 mark each (5 marks)

  (b)     Describe the culture of man in the Middle Stone Age period.        (10 marks)

  • Man continued hunting and gathering especially big animals
  • Man-made tools like hand axes using levallois method.
  • Man did fishing on rivers and lakes
  • They lived in groups and camps for protection purposes
  • They made shelters and also lived in caves.
  • They used simple hunting methods of chasing animals and throwing stones at them as well as using traps
  • They started wearing animal skins as clothing
  • They painted themselves using red ochre and oil
  • Distinct language developed to enhance communication
  • Rock painting was done on cave walls and rocks.
  • They decorated themselves with necklaces made from seeds and animal bones
  • Fire was made during this period and was used for a number of purposes like providing warmth during cold seasons

Any 5 points @ 2 marks each (10 marks)

  1.    (a)       Identify five methods used to acquire slaves during the Trans-Atlantic slave                                                                                                                             (5 marks)
    •      Raids organized by chiefs
    •      Sale of war captives
    •            Leaders sold their subjects to enrich themselves/ slaves were exchanged with     European products
    • They were obtained through kidnapping
    •      Social misfits were sold
    • Through enticement /trickery
    • Selling of debtors/ panyarring

Any 5 points @ 1 mark each (5 marks)

(b)       Explain five factors responsible for the decline of the Trans-Atlantic slave             trade.                                                                                                  (10 marks)

  •    The rise of humanitarian movement in Britain which viewed slave trade as unjust      and inhuman e.g. William Wilberforce, James Fox and Thomas Clarkson.
  •    Leading economists like Adams Smith argued that free people were more                  productive than slave labour.
  •            The development of industrial revolution in Britain shifted the demand of slaves             to agricultural produce.
  • Resistance by Africans both in West Africa and in the new world made the     Europeans to abandon the activity.
  •    The need to discourage mass migration of population from Africa so as to retain       market for European manufactured goods.
  • The result of American civil war of 1865 won by those opposed to slavery led                ending the crucial slave trading/ closure of the slave market in the United States       of America
  • The coming of Christian missionaries who condemned the activity as unchristian.
  • The attainment of independence by the USA in 1776 left Britain without colonies where they could take slaves to work.
  • The use of machines in farms and industries rendered slave labour unnecessary.
  •    Effects from the French revolution of 1789 spread liberty and equality among all            thus discouraged slave trade.
  • Development of legitimate trade which was more profitable and less costly                            replaced slave trade and slavery.
  • Britain influenced other European countries to stop the slave trade by signing anti slave trade treaties.

Any 5 points @ 2 marks each (10 marks)

  1.     (a)       List five traditional forms of communication.                                  (5 marks)
  •      Drum beats
  •      Horn blowing
  •            Messengers/human beings/runners/birds/animals
  • Fire and smoke signals
  •      Gestures and signals/body movements
  • Flags
  • Bells
  • Whistles
  • Screams and cries/whistles
  •      Semaphores   

Any 5 points @ 1 mark each (5 marks)

(b)       Explain five negative impacts of modern means of communication.                                                                                                                                              (10 marks)

  •    Some have promoted immorality through watching of pornographic films.
  •    They have promoted international crime and drug abuse.
  •             It has encouraged idleness and addiction to programmes by viewers.
  • They have created unemployment
  •    Some are expensive to buy and install
  • Some like radios and televisions cause noise pollution
  • Some programmes on televisions promote violence
  • Prolonged exposure to computer screens cause eye problems
  •  Mobile phones can cause illnesses through exposure to radioactive rays

Any 5 points @ 2 marks each (10 marks)                      

  1.      (a)       Give five economic activities of the Shona Empire during the pre-colonial                                                                                                                              (5 marks)
    • They grew crops/ agriculture
    • They kept livestock
    • They traded with Arabs and Swahili traders/ took part in long distance trade/ trade
    • They hunted elephants for ivory
    • They were iron worked/ blacksmiths
    • They made clothes from wild cotton/ bark fibres
    • They mined gold
    • They were fishermen
    • They gathered/ gathering

Any 5 points @ 1 mark each (5 marks)

 

(b)       Discuss the social organization of the Asante Empire in the pre-colonial             period.                                                                                                (10 marks)

  • The kingdom was composed of many communities who spoke Akan or Twi    
  •    The Asante were organized in clans.
  •            Marriage between members of the same clan was prohibited. They practiced             exogamy and polygamy.
  • Inheritance of property was matrilineal.
  •    The community was bound together by the golden stool.
  • There was an annual cultural festival (Odwira) held at Kumasi to honour the    
  • The society was divided into social classes (social stratification).
  • The Asante worshipped many gods and goddesses/polytheists.
  • The King, chiefs and Omanhenes were religious leaders (semi divine).
  •    The ancestors mediated between god and the people.
  • They believed in a supreme god called Onyame.

Any 5 points @ 2 marks each (10 marks)

Section C (30 marks) 

  1. (a)       Give three methods used by African nationalist in South Africa in their                   struggle for independence.                                                                (3 marks)
  •    Formation of trade unions to fight for workers’ rights.
  •    Formation of political parties to air their grievances e.g. ANC
  •            The use of mass media e.g. radios and newspapers
  •   Leaders engaged in direct negotiation with the government.
  •    Many detained nationalists went on hunger strike
  • Imposition of economic sanctions by international organizations like U.N.O
  • The churches took part in protest demonstrations e.g. the Anglican Church
  • Through armed resistance e.g. the armed wing of ANC
  • Use of boycotts and strikes against the regime.
  •    They also organized protests and demonstrations.

Any 3 points @ 1 mark each (3 marks)

(b)       Explain six problems encountered by nationalists in Ghana in their struggle             for independence.                                                                              (12 marks)

  •    The nationalists were arrested/ detained
  • The political parties were banned
  •            The government enacted pass laws which restricted            movement thus
  • They lacked adequate funds to finance the struggle thus slowing their          
  •    They lacked press freedom making it difficult for them to spread their                                    
  • They lacked advanced weapons thereby making them less effective in            their armed struggle.
  • They had different approaches in their struggle (moderate/radical     wings)                         thus creating a loophole which was exploited by the government.
  • Use of divide and rule policy to divide the Africans.
  • Rivalry between political parties e.g. CPP and NLDtowards o

Any 6 points @ 2 marks each (12 marks)

 

 

 

 

  1.      (a)       Give three terms of the Berlin Conference of 1884-1885.             (3 marks)
  •    African territories were partitioned thus effective sphere of influence.
  •    The Niger, Congo, Nile and Zambezi rivers were declared free areas for     European navigation.
  •            The Congo basin was given to Leopold’s (II)’s International African Association..
  • The European nations vowed to protect missionaries and traders in their areas       irrespective of their nationalities.
  •    It was unanimously agreed that slave trade be stopped in favour of legitimate           
  • European powers reasserted their occupation and control of the African    
  • Nations were encouraged to use peaceful means in solving their differences.
  • Any state laying claim of any part of Africa must inform other interested groups.
  • The European countries with coastal possessions in Africa could have the     immediate hinterland as their sphere of influence.

Any 3 points @ 1 mark each (3 marks)

(b)       Explain six results of Buganda collaboration.                                  (12 marks)

  •    It led to loss of independence.
  •    It led to introduction of Christianity and European influence in Buganda.
  •            Islamic influence declined.
  • Buganda got protection from external enemies like Bunyoro.
  •    Kabaka gained recognition and was referred to as His highness.
  • Kabakas power was gradually eroded as British administrators gave authority to         his officers.
  • Buganda was given an advantageous position in the colonial administration and was helped to conquer other communities.
  • Buganda advanced more economically than other communities as it acquired European manufactured goods like clothes.
  • Buganda benefited from western education and medicine.

Any 6 points @ 2 marks each (12 marks)

  1.     (a)       Outline the structure of the League of Nations.                             (3 marks)
  •    The Council
  •    The Secretariat
  •            The International Court Of Justice
  • The International Labour Organization
  •    The Mandates Commission
  • The Assembly
  • The Minorities Committee

Any 3 points @ 1 mark each (3 marks)

(b)       Explain six causes of the Second World War.                                 (12 marks)

  •    The rise to power of Adolf Hitler and his determination to restore Germany’s lost         
  •    Unfavourable conditions imposed on Germany by the treaty of Versailles     humiliated and made her nurse a grudge against the allied powers.
  •            The growths of nationalism made countries to be inward looking and therefore were reluctant to participate in international issues.
  • The great depression of the 1930s intensified economic instability and forced     some countries to practice economic protectionism.
  •    The inability of the League of Nations to implement its resolutions and punish      those who violated them encouraged the aggressors to pursue their objectives/           ambitions and this intensified tension in the world.
  • The policy of appeasement practiced by France and Britain encouraged the     dictators to carry on with their acts of aggression
  • Establishment of alliances between major powers encouraged acts of aggression because of the feeling of mutual support
  • The rise of dictators in the 1920’s and 1930’s destroyed democratic rights
  • Armament and increased armed forces increased tension contrary to the wishes of the Versailles treaty
  •    The Spanish civil war (1936 – 1939).
  • Territorial violations e.g. in 1935 Italy invaded Ethiopia,

Any 6 points @ 2 marks each (12 marks)

Lugari Diploma Teachers Training College Location, Course List, Fees, Requirements, How to Apply

Lugari Diploma Teachers Training College Location, Course List, Fees, Requirements, How to Apply

Lugari Diploma Teachers Training College, registered by the Ministry of Education is currently the second highest Public Government Training Institution based in Western Kenya.

The Institution is located in Kakamega County, Lugari Sub County, in Munyuki Sub-Location, approximately 35kilometres from Eldoret on Uganda – Webuye Road, between Turbo Township and Kipkarren River Township, 4 km from the main Eldoret-Malaba road, in a serene and cool environment away from industrial and traffic pollution.

The concept of starting a Public Teacher Training College was first mooted in 2013. Lugari community was keen on having a Teacher Training College started in the sub county. It was largely felt that the establishment of the College other than assisting students from all over Kenya would encourage students from the Secondary and Primary schools within the Constituency/County to uplift their performance, and also stir economic growth in the region.

It was an initiative of the Community through the Constituency Development Fund (CDF) and Ministry of Education. It is managed by a Substantive Board of Management appointed by the Cabinet Secretary – Ministry of Education.

The College was cleared by The Kenya Universities and Colleges Central Placement Service (KUCCPS) and received its first batch of students in September 2015/2016 Academic Year. Initial Officers included the first Principal Mrs. Anne Esese and the Deputy Principal Mr. Joseph Ngecho.

They were later joined by other Lecturers. Everyone is welcome at Lugari Diploma Teachers Training College. Call, visit, explore and have a look at the courses offered and find out if we have a programme suited for you or your loved ones.

APPLICATION & ADMISSION

1. Application
(a) Via KUCCPS

When KUCCPS opens its window for students to apply and/or revise their courses choice, please visit KUCCPS website www.students.kuccps.net to make your applicaion. Check course codes for courses offered at Lugari Diploma Teachers’ Training College to ensure you have the right course codes.

(b) Walk in students

Students who missed to apply when KUCCPS opened its website for applications are advised to choose a course from the list below. Follow the steps as guided and fill in the details. You will receive a response through your email.

N/B:
K.C.S.E. certificate/ Results slip will be verified before a student is guided for KUCCPS placement.

2. Admission

To access your admission letter, log in to the website through the link https://www.lugaridttc.ac.ke/admission/access using your index number as the username and Year sat for KCSE as the password.
Once you log in, you can retrieve your admission letter.
N/B:
In case of any challenges, kindly reach out to us through the follwing contacts:
+254718120187
lugaridttc@gmail.com

You will be guided to download the admission letter after your results are verified

Programmes

# COURSE NAME STANDARD QUALIFICATIONS SPECIFIC SUBJECTS QUALIFICATIONS ACTION
1 DSTE IN HOME & HOME MANAGEMENT AND FOOD & NUTRITION KCSE Mean Grade C+ C+ in Home Science Or Biology Apply
C (plain) in English
D+ in Mathematics
2 DSTE IN FOOD & NUTRITION AND HAIR DRESSING & BEAUTY THERAPY KCSE Mean Grade C+ C+ in Home Science Or Biology Apply
C (plain) in English
D+ in Mathematics
3 DSTE IN FOOD & NUTRITION AND FASHION DESIGN & INTERIOR DECOR KCSE Mean Grade C+ C+ in Home Science Or Biology or Chemistry or English or Kiswahili or French or German Apply
C (plain) in English
D+ in Mathematics
4 DSTE IN FOOD & NUTRITION AND TEXTILE DESIGN & TECHNOLOGY KCSE Mean Grade C+ C+ In Home Science Or Agriculture Or Chemistry Or Physics Apply
C (plain) in English
D+ in Mathematics
5 DSTE IN HOME, HOME MANAGEMENT AND HAIR DRESSING & BEAUTY THERAPY KCSE Mean Grade C+ C+ in Home Science Or Biology Apply
C (plain) in English
D+ in Mathematics
6 DSTE IN HOME, HOME MANAGEMENT, FASHION DESIGN & INTERIOR DECOR KCSE Mean Grade C+ C+ in Home Science Or Biology or Chemistry or English or Kiswahili or French or German Apply
C (plain) in English
D+ In Mathematics
7 DSTE IN HOME, HOME MANAGEMENT AND TEXTILE DESIGN TECHNOLOGY KCSE Mean Grade C+ C+ In Home Science Or Biology Or Chemistry Or Agriculture Apply
C (Plain) In English
D+ In Mathematics
8 DSTE IN HAIR DRESSING, BEAUTY THERAPY AND FASHION DESIGN & INTERIOR DECOR KCSE Mean Grade C+ C+ in Home Science Or Biology or Chemistry or English or Kiswahili or French or German Apply
C (Plain) In English
D+ in Mathematics
9 DSTE IN HAIR DRESSING & BEAUTY THERAPY AND TEXTILE DESIGN TECHNOLOGY KCSE Mean Grade C+ C+ In Home Science Or Biology Or Chemistry Or Physics Or Agriculture Apply
C (Plain) In English
D+ In Mathematics
10 DSTE IN FASHION DESIGN & INTERIOR DÉCOR AND TEXTILE DESIGN TECHNOLOGY KCSE Mean Grade C+ C+ In Home Science Or Biology Or Chemistry Or Physics Or Agriculture Apply
C (Plain) In English
D+ In Mathematics
11 DSTE IN FOOD & NUTRITION AND COMPUTER STUDIES KCSE Mean Grade C+ C+ In Home Science Or Biology Or Chemistry Or Agriculture Apply
C (Plain) In English C+ In Computer Studies or Physics
D+ In Mathematics
12 DSTE IN HOME, HOME MANAGEMENT AND COMPUTER STUDIES KCSE Mean Grade C+ C+ In Home Science Or Biology Apply
C (Plain) In English C+ In Computer Studies
D+ In Mathematics
13 DSTE IN HAIR DRESSING & BEAUTY THERAPY AND COMPUTER STUDIES KCSE Mean Grade C+ C+ In Home Science Or Biology Apply
C (Plain) In English C+ In Computer Studies or Physics
D+ In Mathematics
14 DSTE IN HAIR DRESSING & BEAUTY THERAPY AND COMPUTER STUDIES KCSE Mean Grade C+ C+ In Home Science Or Chemistry Or Biology Apply
C (Plain) In English C+ In Computer Studies
D+ In Mathematics
15 DSTE IN TEXTILE DESIGN & INTERIOD DECOR AND COMPUTER STUDIES KCSE Mean Grade C+ C+ In Home Science Or Chemistry Or Agriculture or Physics Apply
C (Plain) In English C+ In Computer Studies
D+ In Mathematics
16 DSTE IN HAIR DRESSING & BEAUTY THERAPY AND ENGLISH KCSE Mean Grade C+ C+ English Apply
D+ In Mathematics C+ In Home Science or Biology
17 DSTE IN HAIR DRESSING & BEAUTY THERAPY AND LITERATURE IN ENGLISH KCSE Mean Grade C+ C+ English Apply
D+ In Mathematics C+ In Home Science or Biology
18 DSTE IN HAIR DRESSING & BEAUTY THERAPY AND KISWAHILI KCSE Mean Grade C+ C+ in Kiswahili Apply
C(plain) in English C+ In Home Science or Biology
D+ In Mathematics
19 DSTE IN HAIR DRESSING & BEAUTY THERAPY AND FASIHI YA KISWAHILI KCSE Mean Grade C+ C+ in Kiswahili Apply
C(plain) in English C+ In Home Science or Biology
D+ In Mathematics
20 DSTE IN FASHION DESIGN & INTERIOR DÉCOR AND ENGLISH. KCSE Mean Grade C+ C+ in English Apply
C (Plain) In English C+ in Home Science or Biology
D+ In Mathematics
21 DSTE IN FASHION DESIGN & INTERIOR DÉCOR AND LITERATURE IN ENGLISH. KCSE Mean Grade C+ C+ in English Apply
C (Plain) In English C+ in Home Science or Biology
D+ In Mathematics
22 DSTE IN FASHION DESIGN & INTERIOR DÉCOR AND KISWAHILI KCSE Mean Grade C+ C+ in Kiswahili Apply
C (plain) in English C+ In Home Science or Biology
D+ In Mathematics
23 DSTE IN FASHION DESIGN & INTERIOR DÉCOR AND FASIHI YA KISWAHILI KCSE Mean Grade C+ C+ in Kiswahili Apply
C (Plain) In English C+ In Home Science Or Biology
D+ In Mathematics
24 DSTE IN FOOD & NUTRITION AND CRE KCSE Mean Grade C+ C+ in CRE Apply
C (Plain) In English C+ in Home Science or Biology
D+ In Mathematics
25 DSTE IN FOOD & NUTRITION AND GEOGRAPHY KCSE Mean Grade C+ C+ in Geography Apply
C (Plain) In English C+ in Home Science or Biology
D+ In Mathematics
26 DSTE IN FOOD & NUTRITION AND HISTORY & CITIZENSHIP KCSE Mean Grade C+ C+ in History Apply
C (Plain) In English C+ in Home Science or Biology
D+ In Mathematics
27 DSTE IN FOOD & NUTRITION AND BUSINESS STUDIES KCSE Mean Grade C+ C+ Business Studies Apply
C (Plain) In English C+ In Home Science or Biology
D+ In Mathematics
28 DSTE IN HOME & HOME MANAGEMENT AND CRE KCSE Mean Grade C+ C+ in CRE Apply
C (Plain) In English C+ In Home Science or Biology
D+ In Mathematics
29 DSTE IN HOME & HOME MANAGEMENT AND GEOGRAPHY KCSE Mean Grade C+ C+ in Geography Apply
C (Plain) In English C+ In Home Science or Biology
D+ In Mathematics
30 DSTE IN HOME & HOME MANAGEMENT AND HISTORY & CITIZENSHIP KCSE Mean Grade C+ C+ in History Apply
C (Plain) In English C+ In Home Science or Biology
D+ In Mathematics
31 DSTE IN HOME & HOME MANAGEMENT AND BUSINESS STUDIES KCSE Mean Grade C+ C+ Business Studies Apply
C (Plain) In English C+ In Home Science or Biology
D+ In Mathematics
32 DSTE IN HAIR DRESSING & BEAUTY THERAPY AND BUSINESS STUDIES KCSE Mean Grade C+ C+ Business Studies Apply
C plain in English C+ In Home Science or Biology
D+ In Mathematics
33 DSTE IN HAIR DRESSING & BEAUTY THERAPY AND CRE KCSE Mean Grade C+ C+ in CRE Apply
C plain in English C+ In Home Science or Biology
D+ In Mathematics
34 DSTE IN HAIR DRESSING & BEAUTY THERAPY AND GEOGRAPHY KCSE Mean Grade C+ C+ in Geography Apply
C(plain) in English C+ In Home Science or Biology
D+ In Mathematics
35 DSTE IN HAIR DRESSING & BEAUTY THERAPY AND HISTORY & CITIZENSHIP KCSE Mean Grade C+ C+ in History Apply
C (plain) in English C+ In Home Science or Biology
D+ In Mathematics
36 DSTE IN TEXTILE DESIGN TECHNOLOGY AND HISTORY & CITIZENSHIP KCSE Mean Grade C+ C+ in History Apply
C (plain) in English C+ In Home Science or Or Agriculture or Physics
D+ In Mathematics
37 DSTE IN TEXTILE DESIGN TECHNOLOGY AND BUSINESS STUDIES KCSE Mean Grade C+ C+ Business Studies Apply
C plain in English C+ In Home Science or Physics or Agriculture or Chemistry
D+ In Mathematics
38 DSTE IN TEXTILE DESIGN TECHNOLOGY AND CRE KCSE Mean Grade C+ C+ in CRE Apply
C plain in English C+ In Home Science or Physics or Agriculture or Chemistry
D+ In Mathematics
39 DSTE IN TEXTILE DESIGN TECHNOLOGY AND GEOGRAPHY KCSE Mean Grade C+ C+ in Geography Apply
C(plain) in English C+ In Home Science or Physics or Agriculture or Chemistry
D+ In Mathematics
40 DSTE IN FASHION DESIGN & INTERIOD DÉCOR AND HISTORY & CITIZENSHIP KCSE Mean Grade C+ C+ in History Apply
C (plain) in English C+ In Home Science or Biology
D+ In Mathematics
41 DSTE IN FASHION DESIGN & INTERIOD DÉCOR AND BUSINESS STUDIES KCSE Mean Grade C+ C+ Business Studies Apply
C plain in English C+ In Home Science or Biology
D+ In Mathematics
42 DSTE IN FASHION DESIGN & INTERIOD DÉCOR AND CRE KCSE Mean Grade C+ C+ in CRE Apply
C plain in English C+ In Home Science or Biology
D+ In Mathematics
43 DSTE IN FASHION DESIGN & INTERIOD DÉCOR AND GEOGRAPHY KCSE Mean Grade C+ C+ in Geography Apply
C(plain) in English C+ In Home Science or Biology
D+ In Mathematics
44 DSTE IN CRE AND ENGLISH KCSE Mean Grade C+ C+ in CRE Apply
D+ In Mathematics C+ in English
45 DSTE IN CRE AND LITERATURE IN ENGLISH KCSE Mean Grade C+ C+ in CRE Apply
D+ In Mathematics C+ in English
46 DSTE IN CRE AND KISWAHILI KCSE Mean Grade C+ C+ in CRE Apply
D+ In Mathematics C+ in Kiswahili
C plain in English
47 DSTE IN CRE AND FASIHI YA KISWAHILI KCSE Mean Grade C+ C+ in CRE Apply
D+ In Mathematics C+ in Kiswahili
C plain in English
48 DSTE IN GEOGRAPHY AND ENGLISH KCSE Mean Grade C+ C+ in GEOGRAPHY Apply
D+ In Mathematics C+ in English
49 DSTE IN GEOGRAPHY AND LITERATURE IN ENGLISH KCSE Mean Grade C+ C+ in GEOGRAPHY Apply
D+ In Mathematics C+ in English
50 DSTE IN GEOGRAPHY AND KISWAHILI KCSE Mean Grade C+ C+ in GEOGRAPHY Apply
D+ In Mathematics C+ in Kiswahili
C plain in English
51 DSTE IN GEOGRAPHY AND FASIHI YA KISWAHILI KCSE Mean Grade C+ C+ in GEOGRAPHY Apply
D+ In Mathematics C+ in Kiswahili
C plain in English
52 DSTE IN HISTORY & CITIZENSHIP AND ENGLISH KCSE Mean Grade C+ C+ in History Apply
D+ In Mathematics C+ in English
53 DSTE IN HISTORY & CITIZENSHIP AND LITERATURE IN ENGLISH KCSE Mean Grade C+ C+ in History Apply
D+ In Mathematics C+ in English
54 DSTE IN HISTORY & CITIZENSHIP AND KISWAHILI KCSE Mean Grade C+ C+ in History Apply
D+ In Mathematics C+ in Kiswahili
C plain in English
55 DSTE IN HISTORY & CITIZENSHIP AND FASIHI YA KISWAHILI KCSE Mean Grade C+ C+ in History Apply
D+ In Mathematics C+ in Kiswahili
C plain in English
56 DSTE IN BUSINESS STUDIES AND ENGLISH KCSE Mean Grade C+ C+ in Business Studies Apply
D+ In Mathematics C+ in English
57 DSTE IN BUSINESS STUDIES AND LITERATURE IN ENGLISH KCSE Mean Grade C+ C+ in Business Studies Apply
D+ In Mathematics C+ in English
58 DSTE IN BUSINESS STUDIES AND KISWAHILI KCSE Mean Grade C+ C+ in Business Studies Apply
D+ In Mathematics C+ in Kiswahili
C plain in English
59 DSTE IN BUSINESS STUDIES AND FASIHI YA KISWAHILI KCSE Mean Grade C+ C+ in Business Studies Apply
D+ In Mathematics C+ in Kiswahili
C plain in English
60 DSTE IN CRE AND GEOGRAPHY KCSE Mean Grade C+ C+ in CRE Apply
D+ In Mathematics C+ in GEOGRAPHY
C plain in English
61 DSTE IN CRE AND HISTORY & CITIZENSHIP KCSE Mean Grade C+ C+ in History Apply
D+ In Mathematics C+ in CRE
C plain in English
62 DSTE IN CRE AND BUSINESS STUDIES KCSE Mean Grade C+ C+ in Business Studies Apply
D+ In Mathematics C+ in CRE
C plain in English
63 DSTE IN GEOGRAPHY AND HISTORY KCSE Mean Grade C+ C+ in Geography Apply
D+ In Mathematics C+ in History
C plain in English
64 DSTE IN GEOGRAPHY AND BUSINESS STUDIES KCSE Mean Grade C+ C+ in Business Studies Apply
D+ In Mathematics C+ in Geography
C plain in English
65 DSTE IN HISTORY & CITIZENSHIP AND BUSINESS STUDIES KCSE Mean Grade C+ C+ in Business Studies Apply
D+ In Mathematics C+ in History
C plain in English
66 DSTE IN MATHEMATICS AND HOME & HOME MANAGEMENT KCSE Mean Grade C+ C+ in Mathematics Apply
C (Plain) In English C+ In Home Science Or Biology
67 DSTE IN FOOD & NUTRITION AND MATHEMATICS KCSE Mean Grade C+ C+ in Mathematics Apply
C (Plain) In English C+ In Home Science Or Biology
68 DSTE IN COMPUTER STUDIES AND MATHEMATICS KCSE Mean Grade C+ C+ In Mathematics Apply
C (Plain) In English C+ In Computer Studies
69 DSTE IN ENGLISH AND LITERATURE KCSE Mean Grade C+ C + in English Apply
D+ In Mathematics
70 DSTE IN KISWAHILI AND FASIHI YA KISWAHILI KCSE Mean Grade C+ C+ In Kiswahili Apply
C (Plain) In English
D+ In Mathematics
71 DSTE IN MATHEMATICS AND BUSINESS STUDIES KCSE Mean Grade C+ C+ In Mathematics Apply
C (Plain) In English C+ In Business Studies
72 DSTE IN MATHEMATICS AND GEOGRAPHY KCSE Mean Grade C+ C+ in Mathematics Apply
C (Plain) In English C+ in Geography
73 DSTE IN MATHEMATICS AND ELECTRICAL TECHNOLOGY KCSE Mean Grade C+ C+ In Mathematics Apply
C (Plain) In English C+ in Electricity Or Physics Or Chemistry
74 DSTE IN MATHEMATICS AND ELECTRICAL INSTALLATION KCSE Mean Grade C+ C+ In Mathematics Apply
C (Plain) In English C+ in Electricity Or Physics Or Chemistry
75 DSTE IN COMPUTER STUDIES AND ELECTRICAL TECHNOLOGY KCSE Mean Grade C+ C+ in Computer Studies or Mathematics Apply
C (Plain) In English C+ in Electricity Or Physics Or Chemistry
76 DSTE IN COMPUTER STUDIES AND ELECTRICAL INSTALLATION KCSE Mean Grade C+ C+ In Computer Studies or Mathematics Apply
C (Plain) In English C+ In Electricity Or Physics Or Chemistry
D+ In Mathematics
77 DSTE IN MATHEMATICS AND WOOD TECHNOLOGY KCSE Mean Grade C+ C+ In Mathematics Apply
C (Plain) In English C+ In Woodwork Or Physics Or Chemistry Or Biology
78 DSTE IN COMPUTER STUDIES AND WOOD TECHNOLOGY KCSE Mean Grade C+ C+ In Woodwork Or Physics Or Chemistry Or Biology Apply
C (Plain) In English C+ In Computer Studies
D+ In Mathematics
79 DSTE IN WOOD TECHNOLOGY AND BUSINESS STUDIES KCSE Mean Grade C+ C+ Woodwork Or Physics Or Chemistry Or Biology Apply
C (Plain) In English C+ In Business Studies
D+ In Mathematics
80 DSTE IN ELECTRICAL TECHNOLOGY AND ELECTRICAL INSTALLATION KCSE Mean Grade C+ C+ in Physics or Electricity or Mathematics Apply
C (Plain) In English
81 DSTE IN AGRICULTURE AND TEXTILE DESIGN TECHNOLOGY KCSE Mean Grade C+ C+ In Agriculture Apply
C (Plain) In English C+ In Home Science Or Biology
D+ In Mathematics
82 DSTE IN AGRICULTURE AND WOOD TECHNOLOGY KCSE Mean Grade C+ C+ Woodwork Or Physics Or Chemistry Apply
D+ In Mathematics
C (Plain) In English C+ In Agriculture
83 DSTE IN AGRICULTURE AND ELECTRICAL INSTALLATION KCSE Mean Grade C+ C+ In Agriculture Apply
C (Plain) In English C+ In Electricity Or Physics Or Chemistry Or Mathematics
84 DSTE IN AGRICULTURE AND ELECTICAL TECHNOLOGY KCSE Mean Grade C+ C+ In Agriculture Apply
C (Plain) In English C+ In Electricity Or Physics Or Chemistry Or Mathematics
85 DSTE IN AGRICULTURE AND FASHION DESIGN & INTERIOR DECOR KCSE Mean Grade C+ C+ In Agriculture Apply
C (Plain) In English C+ In Home Science Or Biology
D+ In Mathematics
86 DSTE IN AGRICULTURE AND HAIR DRESSING& BEAUTY THERAPY KCSE Mean Grade C+ C+ In Agriculture Apply
C (Plain) In English C+ In Home Science Or Biology
D+ In Mathematics
87 DSTE IN AGRICULTURE AND HOME & HOME MANAGEMENT KCSE Mean Grade C+ C+ In Agriculture Apply
C (Plain) In English C+ In Home Science Or Biology
D+ In Mathematics
88 DSTE IN AGRICULTURE AND GEOGRAPHY KCSE Mean Grade C+ C+ In Agriculture Apply
C (Plain) In English C+ In Geography
D+ In Mathematics
89 DSTE IN AGRICULTURE AND BUSINESS STUDIES KCSE Mean Grade C+ C+ In Business Studies Apply
C (Plain) In English C+ In Agriculture
D+ In Mathematics
90 DSTE IN AGRICULTURE AND MATHEMATICS KCSE Mean Grade C+ C+ In Mathematics Apply
C (Plain) In English C+ In Agriculture

Education hub Exams for Primary, Juniour and Secondary

Download free Education hub Exams for Primary, Juniour and Secondary Schools. The largest collection of free Education Materials:

CBC EXAMS: PP1-2, GRADE 1-9

KJSEA Quick revision exams

Grade 9 Notes, Schemes of Work & Exams {Ultimate Downloads}

Grade 8 Notes, Schemes of Work & Exams {Ultimate Downloads}

Grade 7 Notes, Schemes of Work & Exams {Ultimate Downloads}

Grade 6 Notes, Schemes of Work & Exams {Ultimate Downloads}

Grade 5 Notes, Schemes of Work & Exams {Ultimate Downloads}

Grade 4 Notes, Schemes of Work & Exams {Ultimate Downloads}

Grade 3 Notes, Schemes of Work & Exams {Ultimate Downloads}

Grade 2 Notes, Schemes of Work & Exams {Ultimate Downloads}

Grade 1 Notes, Schemes of Work & Exams {Ultimate Downloads}

PP2 Notes, Schemes of Work & Exams {Ultimate Downloads}

PP1 Notes, Schemes of Work & Exams {Ultimate Downloads}

Grade 9 CBC Exams, Free For Term 1 to 3

Grade 8 CBC Exams, Free For Term 1 to 3

Grade 7 CBC Exams, Free For Term 1 to 3

Grade 6 CBC Exams, Free For Term 1 to 3

Grade 5 CBC Exams, Free For Term 1 to 3

Grade 4 CBC Exams, Free For Term 1 to 3

Grade 3 CBC Exams, Free For Term 1 to 3

Grade 2 CBC Exams, Free For Term 1 to 3

Grade 1 CBC Exams, Free For Term 1 to 3

Grade 9 Comprehensive Exams {1,000 plus downloads}

Grade 6 KPSEA Past Exam Papers

Grade 8 Latest Exam Papers with Answers {Best Collection}

Grade 7 Latest Exam Papers with Answers {Best Collection}

Free Grade 9 Exams {Latest}

KJSEA Grade 9 KNEC Exam Revision Papers

Grade 8 Free CBC Exams

Grade 9 KJSEA exams and answers

SECONDARY EXAMS: FORM 1-4

KCSE 2025 Smartfocus Quick Revision Exams

KCSE 2025 Top Schools Mock Exams with Answers

Free Form 3 Term 2 Exams {Comprehensive}

Free Form 4 Term 2 Exams 2025 {Comprehensive}

Free Form 2 Term 2 Exams 2025 {Comprehensive}

Physics Free Form 1-4 Notes {Best Notes, Exams}

Get free Kiswahili Free Form 1-4 Notes {Best Notes, Exams} below:

Form 2 exams with marking scheme (Comprehensive papers)

History Free Form 1-4 Notes {Best Notes, Exams}

Geography Free Form 1-4 Notes {Best Notes, Exams}

Form 4 Term 1, 2 & 3 Exams {Latest & Past Mocks, KCSE}

Form 3 Term 1, 2 & 3 Exams {Latest}

Form 2 Term 1, 2 & 3 Exams {Latest}

English Free Form 1-4 Notes {Best Notes, Exams}

CRE Free Form 1-4 Notes {Best Notes, Exams}

Chemistry Free Form 1-4 Notes {Best Notes, Exams}

Business Studies Free Form 1-4 Notes {Best Notes, Exams}

Latest Mokasa KCSE Joint Mock Exams

Form 4 KCSE Revision Exams For All Subjects

Champions Series Jet KCSE Mock Exam Papers with Answers

Mang’u High Latest KCSE Mock Exam Papers with Answers

Bunyore Girls & FS Kamusinga Latest KCSE Exam Papers with Answers

Kapsabet Boys Latest KCSE Mock Exam Papers with Answers

English Form 2 Latest Exam Papers with Answers Free Downloads

Physics KCSE Paper 1-3 Exams and answers {Best}

Free F1-4 Agriculture Notes, Schemes of Work, Exams & KCSE Past Papers (1,000 Downloads)

All Biology Notes, Schemes of Work, Exams & KCSE Past Papers {1,000 Downloads}