Close Menu
    Facebook X (Twitter) Instagram
    Citizen News
    • TSC News Portal
    • KMTC News Portal
    • HELB News Portal
    • MONEY & FINANCING
    • Advertise with Us
    • KNEC News Portal
    • Knec Schools Portal
    • KUCCPS News Portal
    • Teachers’ Resources
    Facebook X (Twitter) Instagram
    Citizen News
    Teachers' Resources

    Mathematics KCSE Mock Exams and Answers {Latest Best Collections}

    By Maverick JohnMay 31, 2025No Comments42 Mins Read

     

    MOCKS 1 2023

     

    121/1MATHSPAPER 1MARKING SCHEME

    1. Numerator:

    Denominator:

    M1

    M1

     

    A1

    Numerator

    Denominator

        03  
    2. N;(

    D;

     

    M1

     

    M1

     

     

    A1

    Numerator

     

    denominator

        03  
    3. UK

                        =

     

     

    M1

     

     

     

    M1

     

    A1

     

     

    Expression

     

     

     

    Expression

     

    CAO

        03  
    4. M1

     

     

     

     

     

    M1

     

    A1

     

     

     

     

     

     

    Comparing powers

     

     

        03  
    5.  

    M1

     

     

     

     

    M1

    A1

     

    Equation

     

     

     

     

    Expression

     

        03

     

     

     

     

     

     

     

     

     
    6.
    No. Log
    2 0.3010
    0.324  +
    1.7642 0.2465 x 2

    0.4930              –

    5.42 0.7340 +

    1.2270

     

    0.4428

     

    M1

     

     

     

     

     

     

     

     

     

    M1

     

     

     

    A1

     

    All logs correct

     

     

     

     

     

     

     

     

    Attempt to divide

        03  
    7.   B1

     

    B1

     

    B1

    2y<x +4

     

    4y ≥ – x- 4

     

     

    x≤2

        03  
    8. Midpoint (  

    M1

     

     

     

    M1

     

    A1

     

     

        03  
    9. LCM = 900 = 22 x 32 x 52

    36 = 22 x 32

    60 = 22 x 3 x 5

    Least possible number = 2 x 3 x 52= 150

     

    B1

     

    B1

     

    B1

    GCD/LCM

     

    36/60

        03  
    10. M1

     

    M1

     

    A1

     
        03  
    11.  

     

    M1

     

     

    M1

     

     

     

     

     

    A1

     

     

     

     

     

    Substitution

     

     

     

     

     

    For both

        03  
    12.  (a) 5         Tan θ =

    4

    3

    (b) Cos (180 – θ) = –

    B1

     

    B1

     

     

    B1

     
        03  
    13.  

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    B1

     

    B1

     

     

    B1

     

     

     

     

     

     

     

    Complete net, well labelled

        03  
    14.  

     

    M1

     

    M1

     

    A1

     
        03  
     

    15.

     

    (i)

    <BOD = 2 <DAB = 2 x 87 = 1740

     

    (ii)

     

     

     

     

     

    B1

    B1

     

    B1

    B1

     

     

     

     

     

    <AOB

    Property

     

    <ADT

    Property

    16. (i)

     

    (ii)

     

     

     

     

    M1

     

    M1

     

    A1

     

    B1

     
        04  
    17. (a) Distance after 30mins

                            Relative

                                                            = 20km/hr

     

                           =

     

    (b)

     

    (c)

     

     

    M1

     

     

     

     

    M1

     

    M1

     

     

    M1

     

     

     

    A1

     

    M1

    A1

     

    M1

    M1

    A1

     

     

    For both distance

     

     

     

     

    Relative distance

     

    Relative speed

     

     

    Relative time

        10

     

     

     

     

     
    18. (a)   OP = a +  (b – a)

    = a + b

    BQ = a – b

     

    (b)  (i)OC = h

    =

                OC = b + k

    = ka + (1 – k)b

    h =

    h = k

    h = 1 – k

    k = 1 – k

    2k = 3 – 3k

    5k = 3

    k = h =

    (ii) OC =

    =

     

    (iii)BC: CQ = :

    BC:CQ = 3:2

     

    B1

     

    B1

     

     

    M1

     

    M1

    M1

     

    M1

     

     

     

     

    A1

     

    M1

    A1

     

     

     

    B1

     
        10  
    19.

     

     

     

     

     

     

     

    fd
     9.5 19 0.2
     24.5 539 1.1
     44.5 2225 2.5
    69.5 1668 0.8
    89.5 179 0.2
       

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    Total area = 2 + 22 + 50 + 24 + 2 = 100

    50 – (2 + 22) = 26+26 = 2.5 x y, y = 10.4

    Median = 34.5 + 10.4

     = 44.9

     

    B1

     

     

     

     

     

    M1

    A1

     

     

     

     

     

     

     

     

     

     

     

     

    B1

     

    S1

    B1

    B1

     

    B1

     

     

     

     

     

     

     

     

     

     

     

     

    B1

    A1

     

    fx

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    f.d

     

    scale

     

     

     

    For median line

        10  
    20. a)

    x -4 -3 -2 -1 0 1 2 3
    y 30 13 2 -3 -2 5 18 37

    b)

    c) i) x = + 0.4

    x = -1.7         + 0.1

    ii) y = 3x2 + 4x – 2

    0 = 3x2 + 7x + 2

    y = -3x – 4

    x = -2 or  x = -0.4      + 0.1

     

    B2

    B1

     

     

     

     

     

     

     

     

     

     

     

    B1

    B1

     

     

     

    B1

    L1

     

    B1

     

    All ü

    at least 6 ü

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    For equation of line

    For ü line drawn

        10  
    21.  

    (b) A1(4,-4) B1(7,-3) C1(2,-1)

    (c) A11(4,4) B11(3,7) C11(1,2)

    (d) A111(4,-4) B111(3,-7) C111(1,-2)

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    B1

    B1

    B1

    B1

     

     

    B1

     

     

     

    B1

     

     

    B1

     

    B1

    B1

    B1

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    For plotting

    For ∆ABC

    For ∆A1B1C1

    For construction or otherwise

    For ∆A11B11C11

     

     

    For construction or otherwise

    For ∆A111B111C111

        10

     

     

     

     

     

     

     

     

     

     

     

     
    22. a)

    b) 2.1 + 0.1cm

    200km, 210km, 220km

    c) i) Bearing of M from N = 0100+ 10

    ii) Bearing of N from M = 1900+ 10

    S1

     

     

    B1

     

     

    B1

     

     

    B1

     

     

     

    B2

     

     

     

    M1

    A1

    B1

    B1

    1cm rep.100km

     

     

    <300 at P

     

     

    <450 at Q

     

     

    üpositions of PQM and N

     

     

    ülabelling 540km, 360km, 500km allü

        10  
    23. (b)

     

    (ii) Volume of frustum

     

    (c)    

    M1

    A1

     

     

     

     

     

     

    M1

     

    M1

    A1

     

    M1

     

     

    M1

     

    A1

     
        10  
    24.  

    (i)

     

    (ii)

    (c)

    Maximum speed,

     

     

     

    M1

     

    M1

    A1

     

    M1

     

     

    A1

    B1

     

    M1

    A1

     

    M1

    A1

     

     

    M1

    A1

     

     

     

     

     

     

     

     

     

     

    For both

     

     

     

     

     

     

     

     

        10  

     

    NAME:………………………………………………..          INDEX NO………………………………
    SCHOOL:……………………………………..………          STREAM:…………… ADM:………….

    CANDIDATE’S SIGN …………………………….… DATE …………………………………..

    121/1

    MATHEMATICS

    Paper 1

    FORM 4

    JULY 2023
    Time: 2 ½ Hours

     

                    MOCKS 1 2023

     

    Kenya Certificate of Secondary Education (K.C.S.E)

     

    INSTRUCTIONS TO CANDIDATES

    1. Write your name, stream, admission number and index number in the spaces provided above.
    2. The paper contains two sections, Section I and II
    3. Answer all questions in section I and ONLY any FIVE questions from section II.
    4. All answers and working must be shown on the question paper in the spaces below each question
    5. Show all steps in your calculations, giving answers at each stage
    6. Marks may be given for each correct working even if the answer is wrong
    7. Non-programmable silent electronic calculators and KNEC mathematical tables may be used.

     

    FOR EXAMINERS USE ONLY

     

    Section I

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total
                                     

     

     

    Section II                                                                                            Grand Total

    17 18 19 20 21 22 23 24 Total
                     

     

     

     

     

     

     

     

     

    This paper consists of 16 printed pages. Candidates should check the question paper to ensure that all pages are printed as indicated and no questions are missing.

    SECTION I (50 MARKS)

    Answer all questions in this Section

     

     

    1. Evaluate :                                                                                             (3 mks)

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    1. Simplify completely                         (3 mks)
     

     

     

     

     

     

     

     

     

     

     

    1. Use the exchange rates below to answer this question.

    Buying                                    Selling

    1 US dollar                                                     63.00                           63.20

    1 UK £                                                            125.30                         125.95

    Abwanja, a tourist arriving in Kenya from Britain had 9600 UK Sterling pounds (£). He converted the pounds to Kenya shillings at a commission of 5%. While in Kenya, he spent ¾ of this money. He changed the balance to US dollars after his stay. If he was not charged any commission for this last transaction, calculate to the nearest US dollars, the amount he received.             (3 mks)

     

     

     

     

     

     

     

     

    1. Solve for x in the following equation.                                              (3mks)

    4x (8x – 1) = tan 45o

     

     

     

     

     

     

     

     

    1. The sum of interior angles of two regular polygons of sides; n and n + 2 are in the ratio 3:4. Calculate the sum of the interior angles of the polygon with n sides.                                          (3mks)

     

     

     

     

     

     

     

     

     

     

     

     

     

    1. Use logarithms to evaluate the following correct to 4 decimal places.

    (3mks)

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    1. By shading, show the region defined by the following linear inequalities (3mks)

    2y < x + 4;  4y ≥ –x – 4;  x ≤ 2

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    1. Find the equation of locus of points equidistant from points A (6, 5) and B (-2, 3) in the form

    y = mx + c                                                                                                                                       (3mks)

     

     

     

     

     

     

     

     

     

    1. The GCD of three numbers is 6 and their LCM is 900. If two of the numbers are 36 and 60, find the least possible third number.                         (3mks)

     

     

     

     

     

     

    1. Use the tables of squares, cube roots and reciprocals to evaluate             (3mks)

     

     

     

     

     

     

     

     

     

    1. Solve the following pair of simultaneous equations using substitution method             (3mks)

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    1. Given that Sin q = 0.8 and q is an acute angle, find without using tables or calculators

    (a)       Tanq                                                                                                                              (2mks)

     

     

     

     

     

    • Cos (180 – q)                                                                                                              (1mk)

     

     

     

     

     

     

     

    1. The figure below is a triangular prism of uniform cross-section in which AF = FB =3cm,

    AB = 4cm and BC = 5cm. Draw a clearly labeled net of the prism.                                                 (3mks)

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    1. The mass of two similar cans is 960g and 15000g. If the total surface area of the smaller can is 144cm2, determine the surface area of the larger can.                                     (3mks)

     

     

     

     

     

     

     

    1. In the circle below, O is the centre, angle DAB = 870 , minor Arc AB is twice minor arc AD. CD is a tangent to the circle at D.

     

     

     

     

     

     

     

     

     

     

    Giving reasons, Calculate the size of;

     

    (i)         Angle AOB.                                                                                                                 (2mks)

     

     

     

     

     

     

    (ii)        Angle ADT                                                                                                                   (2mks)

     

     

     

     

     

    1. A sector of a circle of radius 42cm subtends an angle of at the centre of the circle. The sector is folded into an inverted right cone. Calculate

    (i)         The radius of the cone                                                                                                  (3mks)

     

     

     

     

     

     

     

     

    (ii)        To one decimal place the vertical height of the cone                                                      (1mk)

     

     

     

     

    SECTION II: 50 MARKS

    Answer any FIVE questions in this section

     

    1. A bus and a Nissan left Nairobi for Eldoret, a distance of 340 km at 7.00 a.m. The bus travelled at 100km/h while the Nissan travelled at 120km/h. After 30 minutes, the Nissan had a puncture which took 30 minutes to mend.
    • Find how far from Nairobi did the Nissan caught up with the bus                         (5mks)

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    • At what time of the day did the Nissan catch up with the bus?                         (2mks)

     

     

     

     

     

     

     

    • Find the time at which the bus reached Eldoret                         (3mks)

     

     

     

     

     

     

     

     

     

     

     

    1. In the diagram below OA = a, OB = b the points P and Q are such that AP = 2/3 AB, OQ = 1/3 OA

     

     

     

     

     

    (a) Express OP and BQ in terms of a and b                                                                         (2 mks)

     

     

     

     

     

    (b) If OC = hOP and BC = kBQ, Express OC in two different way and hence

    (i)  Deduce the value of h and k.                                                                                      (5 mks)

     

     

     

     

     

     

     

     

     

     

     

    (ii)  Express vector OC in terms of a and b only.                                                            (2 mks)

     

     

     

     

     

    (iii) State the ratio in which C divides BQ                                                                      (1 mk)

     

     

     

    1. The table below shows the marks scored in a Mathematics examination.
    • Calculate the mean mark (3mks)
    Marks Frequency        
    5 – 14 2        
    15 – 34 22        
    35 – 54 50        
    55 – 84 24        
    85 – 94 2        
    • Draw a histogram to represent the above information             (4mks)

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    • Using the histogram, find the median mark (3mks)

     

     

     

     

    1. Given the quadratic function y = 3x2 + 4x – 2
    2. a) Complete the table below for values of x ranging – 4 < x <                                  (2mks)
    x -4 -3 -2 -1 0 1 2 3
    y                
    1. b) Using the grid provided draw the graph of y = 3x2 + 4x – 2 for -4 < x < 3              (3mks)

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    1. c) Using the graph, find the solution to the equations.
    2. i) 3x2 + 4x – 2 = 0                                                                                              (2mks)

     

     

     

     

    1. ii) 3x2 + 7x + 2 = 0                                                                                              (3mks)

     

     

     

    1.  A triangle ABC has vertices A(2,1), B(5,2) and C(0,4).

    (a) On the grid provided plot the triangle ABC.                                                                                                                                           (2 mks)

     

     

     

    (b)  A1B1C1 is the image of ABC under a translation . Plot A1B1C1 and state its coordinates.                                                                                                               (2mks)

     

     

     

     

     

     

     

    (c) Plot A11B11C11 the image of A1B1C1 under a rotation about the origin through a negative quarter turn. State its coordinates.                                                            (3 mks)

     

     

     

     

     

     

    (d) A111B111C111 is the image of A11B11C11 under a reflection on the line y = 0. Plot A111B111C111 and state its coordinates.                                                                                                                                                          (3 mks)

     

     

     

     

     

     

    1. Two Airstrips P and Q are such that Q is 500km due East of P. Two warplanes M and N

    Leave from P and Q respectively at the same time. Warplane M moves at 360km/h on a bearing of 0300.  Warplane N moves at a speed of 240km/h on a bearing of 3150.  The two warplanes landed at Police camps A and B respectively after 90 minutes. Using a scale of 1cm represent 100km

    1. a) Show the relative positions of the two police camps A and B                                  (6mks)

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    (b)       Find the shortest distance between the police camps A and B.                                (2mks)

     

     

     

     

     

     

    (c)       Find the true bearing of;

    1. i) Police camp A from B                                                                                                (1mk)

     

     

     

     

     

     

    1. ii) Police camp B from A                                                                                                (1mk)

     

     

     

     

    1. The diagram below represents square based pyramid standing vertically. AB = 12cm, PQ = 4cm and the height of pyramid PQSV is 10cm.
     
     

     

     
     
     
     
      
     

     

     

     

     

     

     

     

    • If PQRSV is a solid, find the volume of material used to make it.       (2mks)

     

     

     

    • Find the
    • height of the frustum ABCDPQRS                                                                    (2mks)

     

     

     

     

     

     

    • Volume of the frustum                                                                                (3mks)

     

     

     

     

    • The liquid from a hemisphere is poured into PQRS. Find radius correct to 4 significant figures of the hemisphere if the liquid from hemisphere filled the solid completely.                                                                                                                (3mks)

     

     

     

     

     

     

     

     

     

     

     

     

     

    1. The displacement h metres of a particle moving along a straight line after t seconds

    is given by h = -2t3 + 3/2 t2 + 3t

    (a) Find the initial acceleration.                                                                                            (3mks)

     

     

     

     

     

     

     

     

     

    (b) Calculate

    (i) The time when the particle was momentarily at rest.                                          (3mks)

     

     

     

     

     

     

     

    (ii) Its displacement by the time it comes to rest momentarily.                               (2mks)

     

     

     

     

     

     

    (c ) Calculate the maximum speed attained.                                                                                     (2mks)

     

                    MOCKS 1 2023

     

    121/2 MATHEMATICS PAPER 2 MARKING SCHEME

     

    Qn Workings Marks Comments
    1. b2 = 4ac

    52 = c + 2

    25 = c + 2

    c = 23

     

    M1

     

    A1

     

    Correct expression in C

        02  
    2. Truncated = 0.777

    Rounded off = 0.778

    A.E = 0.778 – 0.777 = 0.001

    % E =  x 100

    = 0.12870012870012870012870012870013

     

    B1

     

    M1

    A1

     

    For both values correct

     

    Expression for % Error

    Allow 0.1287

        03  
    3.    =

    P(-8.5, -20, -11)

     

    M1

    A1

    B1

     

    Expression

    Correct matrix

    Co-ordinate form

        03  
    4.  x

     

     

     

    M1

     

     

    M1

     

    M1

     

    A1

     

    Correct substitution in sine rule

     

    Surd form for sin 600

     

    Correct attempt to rationalize

    CAO

     

        04  
    5. (x3)6 -6 (x3)5  + 15 (x3)4 2 – 20 (x3)3 3 . . .

    – 20 (x3)3 3

    – 20 x 8 =

    – 160

     

    M1

     

    M1

    A1

     

    Expansion up to the 4th term

     

    Correct attempt to simplify

    Constant term stated

        03  
    6. Let log3x = y

    2y2 – y – 3 = 0

    (2y – 3)(y + 1) = 0

    y = -1 or y = 1 ½

    if  log3x = -1, x = 3-1 = 1/3

    if  log3x = 1 ½ , x = 31.5 = 5.196

     

     

    M1

    A1

     

    B1

     

     

    Quadratic equation formed

    For both correct

     

    For both correct

        03  
    7. P = cp – d = 13800 – 2280 = 11520

    I = 11520 x 20 x 2/100= 4608

    A = P + I = 11520 + 4608 = 16128

    MI= 16128 ÷ 24

    = 672

     

    M1

     

    M1 A1

     

    Expression for simple interest

     

    Expression for MI

     

        03  
    8. 2ax + x2 = 3v

    x2 + 2ax – 3v = 0

    x2 + 2ax +a2 = 3v + a2

    √(x + a)2 = √(3v +a2)

    x + a = ±√(3v +a2)

    x = -a ± √(3v +a2)

     

    M1

     

    M1

     

    A1

     

    Formation of quadratic equation

    Completing the square

    Correct attempt to solve

        03  
    9.
    x 1.5 2.5 3.5 4.5 5.5
    y 14.75 26.75 77.75 68.75 98.75

    A= 1(14.75 +26.75+77.75+68.75+98.75)

    = 253.75 square units

     

     

    B1

    M1

    A1

     

     

    Correct values of mid-ordinates

    Expression for area

     

        03  
    10. OA = OP = 5 units

    AM = 5 – 2 = 3 units

    OM = √(52 – 32) = 4 units

    C(5,4) , r = 5

    (x – 5)2 + (y – 4)2 = 52

    x2 – 10x + 25 + y2 – 8y + 16 = 25

    x2 + y2 -10x – 8y + 16 = 0

    M1

     

     

     

    M1

     

    M1

     

    A1

    Expression for midpoint

    Radius, r

     

    Expression for OM

     

     

    Correct substitution

     

    Correct expanded form

        04  
    11.  = 1.736k

    % change =

     

     

     

    M1

     

    M1

    A1

     

     

     

    Correct substitution

     

    Expression for percentage change

     

        03  
    12. 3sin2x – sin x – 2 = 0

    Let sin x = y

    3y2 – y -2 = 0

    (3y + 2)(y – 1 ) = 0

    y = 1 or y = -2/3

    sin-1(1) = 900

    sin-1(-2/3) = 221.80, 317.80

    x = 900, 221.80, 317.80

     

     

    M1

    M1

    A1

     

     

    B1

     

     

    Quadratic equation formed

    Correct attempt to solve

    For both

     

     

    All values correct

        04  
    13. i) k + 2k + 3k + 4k + 5k + 6k = 1

    21k = 1

    ii) P(5&6) 0r P(6&5)

    (

     

     

    B1

     

     

    M1

     

     

    A1

     

     

     

     

     

     

     

    Addition of probabilities (allow for any correct)

    Allow

     

        03  
    14. (a) Let VU = x

    8(8 + x) = 122

    8x = 144 – 64 =80

    x = 10

    b)  VX =

    XU =

    XT = 6 + 8 = 14

    SX = √(142 – 122) = 7.211

     

     

     

    B1

     

    M1

     

     

    A1

     

     

     

    x = 10

     

    Expression for XT

        03  
    15.
    h 10-19 20-29 30-39 40-49 50-59 60-69 70-79
    f 9 16 19 26 20 10 4
    cf 9 25 44 70 90 100 104

    Q1 =

    Q3 =

    Quartile deviation =

     

     

     

     

    B1

     

    M1

     

    M1

    A1

     

     

     

    Cf

     

    Q1 and Q3

     

    Expression for quartile deviation

    Allow 16.47

        04  
    16.  = 4:5  

     

     

     

    M1

     

    A1

     

     

     

     

    Correct substitution

     

     

        02  
    17. (a) (i) x-intercept

    x2(2x + 3) = 0

    (ii) y-intercept

    When x =0, y = 0

    (b) (i) Stationary points of curve

    = 0

    6x(x + 1) = 0

    x = 0 or x = -1

    stationary points (0,0) and (-1,1)

    (ii)

    x -2 -1 -0.5 0 1
      12 0 -1.5 0 12
    sketch

    maximum point (-1, 1), minimum point (0,0)

    iii)

     

     

     

    M1

     

    A1

     

    B1

     

    M1

     

    A1

    B1

    B1

     

     

    B1

     

     

    B1

     

     

     

     

     

     

     

    B1

     

     

     

    B1

     

    Factorized form

     

    Both correct

     

    Both correct

     

    Derivative equated to zero

     

    Attempt to solve

    For both

     

     

     

    Checking points

     

     

    For both

     

     

     

     

     

     

     

    Points plotted (-1.5,0), (-1,1), (0,0)

     

     

    Smooth curve

    18. a) (i)

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    ii)

     

    r = 5.2cm    ± 0.1

     

    iii)

    h = 5cm  ± 0.1

     

    b) area of circle – area of triangle

    =  84.98 – 21.25

    = 63.73cm2

     

     

     

     

     

     

     

     

     

     

    B1

    B1

    B1

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    B1

    B1

    B1

     

    B1

    B1

     

     

    M1

    A1

    Construction of 300

    Construction of 1050

    Complete triangle, well labeled

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    Line bisectors

    Complete Circle drawn

    radius

     

    height dropped

     

     

     

    follow through for r and h ± 0.1

        10  

     

    19
    x 0 30 60 90 120 150 180 210 240 270 300 330 360
    2cosx-1 1 1.73   -1   -2.73   -2.73       0.73 1
    sinx   0.50 0.87   0.87     -0.50 -0.87   -.087 0.50 0

     

     

    B1

    B1

     

     

    S1

    P1

    C1

    C1

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    B1

    B1

    B1

    B1

     

     

     

     

     

    Scale

    Plotting for both

    Smooth curve

    20. a) i)

     

    ii)

    b)i)

     

    ii)

     

    B1

     

     

    M1

    A1

     

     

     

     

    B1

     

     

     

     

     

     

     

     

    M1

    M1

    M1

     

    A1

     

    M1

    M1

    A1

     

     

     

     

     

     

     

     

    Tree diagram draw with probabilities indicates

     

     

     

     

     

     

    ü1 probability

    Addition of the probability

     

     

    ü probability

     

    Addition

     

     

     

     

     

     

        10  
    21.  

    (a)(i)

    Distance =

    =longitude difference

    =40+140=1800

     

    =17,337.8Km

    b) =60Î2

    =1200

    Distance =

    =

    =13,346.7km

    (c) A(300N,400N)

     

    B(300W,1400E)

    Difference in longitude=140+40

    =1800

    10=4min

    180=?

    180Î4=720minutes

    8.00+12.00=20.00

    =12.00hrs/8.00pm

    10

     

     

     

     

    B1

     

    M1

    A1

     

    M1

    A1

     

     

    M1

     

    A1

     

     

     

     

     

     

     

    M1

     

     

    M1

    A1

     

     

     

     

     

    For 180o

     

     

     

     

     

     

        10  
    22.  

    Length in cm 9.5-12.5 12.5-15.5 15.5-18.5 18.5-21.5 21.5-24.5
    No. of leaves 3 16 36 31 14
    cf 3 19 55 86 100

     

     

     

     

     

     

    c) i)  Q3  = 19.25, Q1 = 17.15

    ½ (Q3 – Q1) = ½ (19.25 – 17.15)

    = 1.05

     

    ii) 13cm – – 15.2, 17cm – – 15.8

    15.8 – 15.2 = 0.3

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    B2

    B1

     

     

     

     

    S1

    P1

    C1

     

     

    B1

    M1

    A1

     

    B1

    B1

     

    All values correct

    At least 4 values correct

     

     

     

     

     

     

     

     

    Q3 & Q­1 correct

     

     

     

    Correct cf values

     

        10  
    23.
    x 0 1 2 3 4 5 6
    y 3 3.5 5 7.5 11 15.5 21

     

     

     

     

     

     

    Error:       54.5-54=0.5

     

    =

     

     

    B2

     

    M1

     

    A1

     

     

     

    M1

    M1

    A1

     

    B1

     

    M1

    A1

     
        10  
    24. a)

     

     

     

     

    b)

     

     

    300
    250
    200
    150
    100
    50
    0
    300
    250
    200
    150
    100
    50

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    c)     Objective function

     

     

     

     

    B1

    B1

    B1

     

    B1

     

     

     

     

     

     

     

    B1

    B1

     

     

     

    B1

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    B1

     

    B1

    B1

     

     

     

    For each correct inequality

     

     

     

     

     

     

     

     

     

    For each correct line drawn

     

        10  

     

    NAME:………………………………………………..          INDEX NO………………………………
    SCHOOL:……………………………………..………          STREAM:…………… ADM:………….

    CANDIDATE’S SIGN …………………………….… DATE …………………………………..

    121/2

    MATHEMATICS

    Paper 2

    FORM 4
    Time: 2 ½ Hours

     

    MOCKS 1 2023

     

    Kenya Certificate of Secondary Education (K.C.S.E)

     

    INSTRUCTIONS TO CANDIDATES

    1. Write your name, stream, admission number and index number in the spaces provided above.
    2. The paper contains two sections, Section I and II
    3. Answer all questions in section I and ONLY any FIVE questions from section II.
    4. All answers and working must be shown on the question paper in the spaces below each question
    5. Show all steps in your calculations, giving answers at each stage
    6. Marks may be given for each correct working even if the answer is wrong
    7. Non-programmable silent electronic calculators and KNEC mathematical tables may be used.

     

    FOR EXAMINERS USE ONLY

     

    Section I

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total
                                     

     

     

    Section II                                                                                            Grand Total

    17 18 19 20 21 22 23 24 Total
                     

     

     

     

     

                                                                                                         

    This paper consists of 18 printed pages. Candidates should check the question paper to ensure that all pages are printed as indicated and no questions are missing.

    SECTION I

    Answer all the questions in the spaces provided (50marks)

    1. The expression x2 + 10x + c + 2 = 0is a perfect square. Find the value of c if it is a scalar. (2mks)

     

     

     

     

     

    1. Muya was asked to truncate 7/9 to 3 significant figures. He rounded it off instead to 3 decimal places. Calculate the percentage error resulting from his rounding off.                                      (3mks)

     

     

     

     

     

     

     

     

     

     

     

    1. The co-ordinates of a point A is (2, 8, 3) and B is (-4, -8, -5). A point P divides AB externally in the ratio 7: -3.

    Find the co-ordinates of P                        (3mks)

     

     

     

    1. In a triangle XYZ, XY = 2cm, YZ (2√3-1) cm, and angle YXZ = 600. Determine Sine XZY giving your answer in the form m + √3,where M and N are integers                               (4mks)

    n

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    1. Find the independent term of x in the expansion of (x3 – 2/X3) 6 (3mks)

     

     

     

     

     

     

     

     

     

     

     

     

    1. Solve for x: (log3x)2 – ½ log3x= 3/2       (3mks)

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    1. The cash price of a T.V set is Ksh.13,800. Walter opts to buy the set on hire purchase terms by paying deposit of Ksh.2,280. If simple interest of 20% p.a is charged on the balance and the customer is required to pay by monthly installments for 2 years, calculate the amount of each installment.         (3mks)

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    1. Make x the subject of the formula ax = 3r   –  x2                                             (3mks)

    2       2

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    1. Calculate the area under the curvey = 3x2 + 8 and bounded by lines;y = 0, x = 1 and x = 6, using the mid-ordinate rule with 5strips.                                                                                      (3mks)

     

     

     

     

     

     

     

     

     

     

     

     

    1. A circle is tangent to the y – axis and intersects the x- axis at (2,0) and (8,0). Obtain the equation of the circle in the form x2 + y2 +ax +by +c = 0, where a, b and c are integers                              (4mks)

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    1. A variable y varies as the square of x and inversely as the square root of z. Find the percentage change in y when x is changed in the ratio 5:4 and z reduced by 19%                                           (3mks)

     

     

     

     

     

     

     

     

     

     

     

    1. Solve for X in the equation:

    2 Sin2x – 1 = Cos2x + Sin x, for 00 ≤ x ≤ 3600                                         (3mks)

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    1. A die is biased so that when tossed, the probability of a narrator of a number n showing up, is given by p(n) = kn where k is a constant and n = 1, 2, 3, 4, 5, 6 (the numbers of the faces of the die)
    2. Find the value of k       (1mk)

     

     

     

     

     

     

    1. If the die is tossed twice, calculate the probability that the total score is 11       (2mks)

     

     

     

     

     

     

     

    1. In the figure below, the tangent ST meets chord VU produced at T. Chord SW passes through the Centre, O of the circle and intersects chord VU at X. Line ST = 12cm and UT = 8cm.

     

    S

     

     

    T

     

     

    O

    U

    X
    V
    W

     

     

     

     

     

    1. Calculate the length of chord VU             (1mk)

     

     

    1. If VX : XU = 2 : 3, Find SX                                                                                                  (2mks)

     

     

     

     

    1. Dota measured the heights in centimeters of 104 trees seedlings are shown in the table below
    Height 10 – 19 20 – 29 30 – 39 40 – 49 50 – 59 60 – 69 70 – 79
    No. of Seedlings 9 16 19 26 20 10 4

     

    Calculate the quartile deviation                                                                                             (4mks)

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    1. Given that the ratio x:y = 2:3, find the ratio (5x – 2y) : (x +y)                                         (2mks)

     

     

     

     

     

    SECTION II

    Answer ONLY five questions in this section (50marks)

    1. A curve is represented by the function, y = 2x3 + 3x2
    2. Find:(i) the x-intercept of the curve             (2mks)

     

     

    (ii) the y-intercept of the curve                                                                                  (1mk)

     

     

    1. (i) Determine the stationary points of the curve of the curve                                              (3mks)

     

     

     

     

    (ii) For each point in b(i) above, determine if it is maximum or minimum                        (2mks)

     

     

     

     

     

    1. Sketch the curve in the space below                                     (2mks)

     

     

     

     

     

     

    1. Use ruler and a pair of compasses only in this question
    2. Construct; (i) triangle ABC in which AB = 8.5cm, BC = 7.5cm and <BAC = 300and <ABC = 1050

    (3mks)

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    1. ii) a circle that passes through the vertices of triangle ABC. Measure the radius (3mks)

     

    • the height of triangle ABC with line AB as the base. Measure the height.       (2mks)

     

    1. Determine area of the circle that lies outside the triangle             (2mks)

     

    1. a) Complete the table below, giving your values to 2 decimal places                          (2mks)
    x 0 30 60 90 120 150 180 210 240 270 300 330 360
    (2cos x) -1     0   -2   -3   -2 -1 0   1
    Sin x 0     1   0.50 0     -1     0
    1. b) Draw the graph of y= (2 co x) – 1 and y=sin x on the grid provided below. Use the scale 1cm represent 300 horizontal 2 cm represent 1 unit vertically and 2cm for 1 unit on the y-axis (4 mks)

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    1. c) Use the graph to solve:
    2. i) (2cos x) – 1 = -1.5                                                                                          (1mk)

     

    1. ii) 2 cos x – sin x =1             (2mks)

     

     

    1. d) State the amplitude of the wave y=2cos x – 1             (1mk)

     

    1. A bag contains blue, green and red pens of the same type in the ratio 8:2:5 respectively. A pen is picked at random without replacement and its colour noted.
    2. a) Determine the probability that the first pen picked is
    3. i) Blue                                                                                                                (1mk)

     

     

     

     

     

    1. ii) Either green or red.                                                                                        (2mks)

     

     

     

     

     

    1. b) Using a tree diagram, determine the probability that
    2. i) The first two pens picked are both green                                                       (4mks)

     

     

     

     

     

     

     

     

    1. ii) Only one of the first two pens picked is red.                                                             (3mks)

     

     

    1. A and B are two points on the earth’s surface and on latitude 300N.The two points are on the longitude 400W and 1040E respectively.

    Calculate

    (a)       (i)        The distance from A to B along a parallel of latitude in kilometres.                        (3mks)

     

     

     

     

     

     

    (ii)       The shortest distance from A to B along a great circle in kilometre                        (4mks)

    (Take =and radius of the earth =6370km)

     

     

     

     

     

     

     

     

     

     

     

    (b)       If the local time at B is 8.00am, calculate the local time at A                                  (3mks)

     

     

     

    1. Lengths of 100 mango leaves from a certain mango tree were measured t the nearest centimeter and recorded as per the table below,
    Length in cm 9.5-12.5 12.5-15.5 15.5-18.5 18.5-21.5 21.5-24.5
    No. of Leaves 3 16 36 31 14
    Cumulative frequency          
    1. Fill in the table above.                         (2 mks)
    2. Draw a cumulative frequency curve from the above data.             (3 mks)

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    1. b) Use your graph to estimate
    2. i) The quartile deviation of the leaves                                                              (3mks)

     

     

     

     

     

     

     

     

     

     

     

     

    1. ii) The number of leaves whose lengths lie between 13cm and 17cm.             (2mks)

     

     

    1. a) Use the trapezium rule with 7 ordinates to estimate the area enclosed by the curve and the lines x = 0, x = 6 and the x-axis.                                                                                   (4 mks)

     

     

     

     

     

     

    1. b) Determine the exact area bounded the curve and the lines in section a) above (3 mks)

     

     

     

     

    1. c) Calculate the percentage error from the trapezoidal rule (3 mks)

     

     

     

     

     

     

     

     

    1. A manufacturer sells two types of books X and Y. Book X requires 3 rolls of paper while Book Y requires 21/2 rolls of paper. The manufacturer uses not more than 600 rolls of paper daily in making both books.  He must make not more than 100 books of type X and not less than 80 of type Y each day
    2. Write down four inequalities from this information             (4mks)

     

     

    1. On the grid provided, draw a graph to show inequalities in (a) above                          (3mks)

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    1. If the manufacturer makes a profit of sh 80 on book X and a profit of sh 60 on book Y, how many books of each type must it make in order to maximize the profit.                                        (3mks)

     

    Maverick John

    Related Posts

    Grade 7 Term 3 Schemes of Work

    August 29, 2025

    Grade 9 Term 3 Schemes of Work

    August 29, 2025

    Grade 6 Term 3 Schemes of Work

    August 29, 2025

    Grade 8 Term 3 Schemes of Work

    August 29, 2025

    Form 3 Term 3 Schemes of Work

    August 29, 2025

    Form 2 Term 3 Schemes of Work

    August 29, 2025

    GRADE 8 AGRICULTURE & NUTRITION NOTES

    August 29, 2025

    GRADE 9 KISWAHILI LESSON NOTES

    August 29, 2025

    GRADE 9 ENGLISH LESSON NOTES

    August 29, 2025

    TRENDING NOW

    • Grade 7 Term 3 Schemes of Work
    • Grade 9 Term 3 Schemes of Work
    • Grade 6 Term 3 Schemes of Work
    • Grade 8 Term 3 Schemes of Work
    • Form 3 Term 3 Schemes of Work
    • Form 2 Term 3 Schemes of Work
    • GRADE 8 AGRICULTURE & NUTRITION NOTES
    • GRADE 9 KISWAHILI LESSON NOTES
    • GRADE 9 ENGLISH LESSON NOTES
    • Free Grade 8 Integrated Science Notes
    • Free Grade 8 Creative Arts and Sports Notes
    • FREE GRADE 9 SOCIAL STUDIES NOTES
    • FREE GRADE 9 SOCIAL STUDIES NOTES
    • FREE GRADE 8 PRETECHNICAL NOTES
    • FREE GRADE 8 CRE NOTES
    • Form 3 Agriculture Schemes of Work Term 3
    • FORM 2 BIOLOGY SCHEME OF WORK TERM 3
    • FORM 2 AGRICULTURE SCHEME OF WORK TERM 3
    • GRADE 1 CREATIVE ARTS SCHEMES OF WORK 
    • FORM 3 BIOLOGY SCHEME OF WORK TERM 3
    • Grade 9 Term 3 Rationalized Schemes of Work.
    • Grade 8 Term 3 Rationalized Schemes of Work.
    • Grade 7 Term 3 Rationalized Schemes of Work.
    • Maseno School 2025 Pre-mock Exams
    • KCSE 2025 Revision Exams {Full Papers}
    • Grade 7 Free Exams and Marking Schemes
    • Grade 8 Targeter Exams {All Subjects and Answers}
    • Grade 9 Targeter Exams {All Subjects and Answers}
    • Grade 9 Targeter Exams {Plus Answers}
    • Grade 4 Targeter Exams {Plus Answers}
    • Grade 6 Targeter Exams {Plus Answers}
    • Grade 5 Targeter Exams {Plus Answers}
    • Grade 2 Term 2 Exams {Plus Answers}
    • Grade 7 Term 2 Exams {Plus Answers}
    • Grade 9 Term 2 Latest Exams {All Subjects}
    • Grade 7 Term 2 Latest Exams {All Subjects}
    • Grade 6 Term 2 Latest Exams {All Subjects}
    • Agriculture Form One Schemes of Work {As per new School Calendar)
    • CBC TOOLS FOR ASSESSING CORE COMPETENCIES, ALL AREAS – PDF DOWNLOAD
    • Mathematics syllabus pdf Free
    • Free Grade 2 Rationalized CBC Notes
    • Latest Guides For Secondary School Set Books 2022-2026
    • KCSE Mokasa Biology Paper 2 Joint Exams and Marking Schemes Free Access
    • CHEMISTRY FORM 2 NOTES- EDITABLE
    • COMPUTER STUDIES FORM 2 SCHEMES OF WORK TERM 1-3 FREE
    • FORM 1-4 FREE EXAMS DOWNLOADS AND MARKING SCHEMES
    • BIOLOGY PAST KCSE QUESTIONS & ANSWERS PER TOPIC- GENETICS IN PDF
    • Free Biology Form 4 KCSE Exams
    • HOME SCIENCE TEACHING UPDATED NOTES PDF
    • Free Grade 2 CBC Notes, Exams & Schemes of Work Downloads
    • Breaking Education News
    • Breaking News
    • Featured
    • General News
    • HELB News Portal
    • IEBC LATEST NEWS
    • KMTC News Portal
    • KNEC News Portal
    • Knec Schools Portal
    • KUCCPS News Portal
    • Latest Jobs
    • MONEY & FINANCING
    • NHIF and Medical Schemes
    • TEACHERS' NEWS PORTAL
    • Teachers' Resources
    • TSC News Portal
    • Universities and Colleges Portal
    • Breaking Education News
    • Breaking News
    • Featured
    • General News
    • HELB News Portal
    • IEBC LATEST NEWS
    • KMTC News Portal
    • KNEC News Portal
    • Knec Schools Portal
    • KUCCPS News Portal
    • Latest Jobs
    • MONEY & FINANCING
    • NHIF and Medical Schemes
    • TEACHERS' NEWS PORTAL
    • Teachers' Resources
    • TSC News Portal
    • Universities and Colleges Portal
    Archives
    • September 2025
    • August 2025
    • July 2025
    • June 2025
    • May 2025
    Facebook X (Twitter) Instagram Pinterest
    • TSC News Portal
    • KMTC News Portal
    • HELB News Portal
    • MONEY & FINANCING
    • Advertise with Us
    • KNEC News Portal
    • Knec Schools Portal
    • KUCCPS News Portal
    • Teachers’ Resources
    © 2025 ThemeSphere. Designed by ThemeSphere.

    Type above and press Enter to search. Press Esc to cancel.